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Abstract—Recent advancements in radar technology and
telecommunications have led to a high population of increasingly
complex emitters in the electromagnetic spectrum. From the
perspective of a signals intelligence (SIGINT) operator, assessing
the general situation comes with several major challenges, e.g. the
detection and extraction of signals of interest, the elimination
of unwanted interferences, or the meaningful representation of
increasingly complex modulation patterns. This paper provides a
general overview of the challenges of SIGINT and suggests possi-
ble ways to support operators with automated signal processing.

Index Terms—Human-Machine Integration, Signals Intelli-
gence, Electronic Intelligence, Communications Intelligence

I. INTRODUCTION

Gathering intelligence information is a central skill of
modern societies. In particular, signals intelligence (SIGINT)
describes the extraction of information based on intercepted
electromagnetic signals. Signal collection may be implemented
at fixed locations or on moving platforms, such as on an
high altitude long endurance unmanned aerial vehicle (HALE
UAV). The main goal is to collect information about the
capabilities of adversaries and assess the current situation
using passive sensing techniques, hence avoiding deployment
of units in access-restricted or hostile areas. SIGINT therefore
plays a vital role in the collection of intelligence information.
However, the electromagnetic spectrum (EMS) is increasingly
populated with both civil and military users, such that relevant
signals become more difficult to find and are often super-
imposed with other, less relevant transmissions. Therefore,
efficient and reliable methods need to be found in order to
cope with the increasing complexity of the EMS.

In general, SIGINT is divided into electronic intelligence
(ELINT) and communications intelligence (COMINT). The
goal of ELINT is to gather information about radar emitters to,
e.g., infer their function or recognise previously seen radars by
identifying characteristic features. Traditional ELINT analysis
heavily relies on emitter databases which contain information
about the operational modes of emitters that usually serve
specific functions. However, agile multifunction radars do not
make use of fixed modes anymore but choose their waveform
parameters tailored to the encountered situation. Hence, static
databases are not able to efficiently represent agile signals
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and new methods for the representation and analysis of
modern multifunction radars are needed. Moreover, due the
increasing occupancy of the EMS, human ELINT operators
might also be overstrained with the amount of received signals
and could therefore miss important activities. Here, machine
learning provides solutions for representing and analysing
highly complex information, as well as reducing repetitive
manual processing tasks.

COMINT, on the other hand, is concerned with gathering
intelligence from foreign communications signals transmitted
over cable, radio or satellites [1], [2]. Besides analysing the
pure content of a transmission which might be encrypted and
therefore difficult or impossible to access, the transmission’s
metadata such as sender/receiver identification or their location
is also of great interest. Similar to ELINT, COMINT operators
need to extract relevant information from a vast amount of
transmissions which might be corrupted by different kinds
of noise or superimposed with other signals due to high
occupancy of frequency bands. Moreover, the analysis of
speech requires specialised personnel who are highly proficient
in the target language and specifically trained to convert
speech to writing and/or extract important information from
the communication signals. The modular automatisation of
speech analysis via machine learning can enable operators to
process communications signals faster, possibly without the
need of profound linguistic knowledge.

Apart from the benefits of automation, however, the ap-
plication of machine learning to SIGINT also comes with
challenges. The introduction of artificial intelligence (AI) can
cause a fundamental change of the work dynamics, that may, in
the worst case, even lead to a deterioration of performance [3],
[4]. It is therefore important to selectively support human
cognition with AI, rather than blindly automating tasks based
on technical feasibility alone. If human operators are supported
by AI in selected tasks, their workload is generally expected
to decrease, nonetheless the supervision of the introduced
machine agent also creates additional effort. Supervising an
artificial agent requires the ability to interpret an algorithm
to assess its performance and adjust system parameters ac-
cordingly. Therefore, meaningful integration of the human in
the loop and explainable AI are complex but important design
issues.



Given the potential benefits, this work considers the bal-
anced integration of human and artificial agents for AI-
supported SIGINT. Sec. II first describes the abstract com-
putational nature of SIGINT that is true for both human and
artificial agents. In Sec. III, the potential of human-machine
resource allocations and issues of automation supervision are
discussed for SIGINT human-machine integration. A more
detailed view on different automation techniques in the ELINT
and COMINT task models is given in Sec. IV and V, respec-
tively. Sec. VI provides a summary.

II. COMPUTATIONAL NATURE OF SIGINT
A. Formalisation of SIGINT

SIGINT can be viewed from the perspective of hybrid
intelligence for human-machine integration, which designs an
integrated human-machine agent rather than isolated humans
and machines [3], [5]. The computational objective of this
SIGINT hybrid is the extraction and report of tactical infor-
mation (e.g. identity, location, affiliation) based on passive
measurements of the EMS (Fig. 1). The OODA loop (observe,
orient, decide, act, Fig. 1) is an intelligent agent model that
has been applied to hybrid agents [6]. Thus, the SIGINT agent
needs to observe the EMS, update its model of the world
(orient), and decide where to search in the EMS and what
to report (decide and act). Note that the active part of the
OODA loop in a SIGINT system refers solely to the adaptation
of its sensors to the situation to improve the surveillance
performance. However, the SIGINT agent generates reports
that may be used by other systems to trigger effector em-
ployment, which requires specific methodological and ethical
considerations [7] that fall outside the scope of this paper.

More formally, a SIGINT agent should strive to minimise
the gap between the real world and its current model of it based
on its mission objectives (effectiveness) while minimising the
time and resources until relevant observations are reported
(efficiency). This process can be formulated in terms of a
so-called Quality of Service resource allocation problem with
K ∈ N tasks or objectives [8], [9]: Each mission objective can
be described as a utility function uk(qk), where qk(rk, ek)
denotes the quality of task performance given the assigned
resources rk and possible environmental parameters ek. In
case of the SIGINT agent, qk is the similarity between the
real world and the extracted model of the situation. Assuming
that the tasks are independent, the SIGINT agent needs to
solve the following constrained optimisation problem:

maximise total utility u(r) =

K∑
k=1

wkuk(qk(rk, ek)) (1)

subject to limited resources

(
K∑

k=1

rk

)
− rmax ≤ 0, (2)

where r = {r1, . . . , rK} is the collection of assigned human
and artificial resources, rmax is the total of available resources,
and the weights wk ∈ [0, 1] satisfy

∑K
k=1 wk = 1.

The mission objectives (or utility functions uk) act as an
attention filter that states which observations are of interest to

Fig. 1. Illustration of SIGINT.

the SIGINT agent. The derived SIGINT model of the world
can be defined as a set of platforms (either stationary stations
or moving land, air, space, or sea vehicles) that must carry at
least one active emitter on them in order to be detected by
the SIGINT agent (Fig. 1). Such sets of interacting platforms
form specific scenarios in an area and timeframe of interest,
e.g., an air defence training.

B. Fusion and Control Architecture of SIGINT

Fig. 2 shows the abstract information fusion and control
architecture of the SIGINT agent which is based on the Joint
Directors of Laboratories (JDL) data fusion model [10]. At
the interface to the world, participating agents of the SIGINT
hybrid search for signals, measure these, perform direction
findings of emitters bearings, and analyse the measured signals
(signal acquisition, Sec. II-C). This level can be seen as the
sensor organs of the hybrid agent [5]. On the next level,
the individual results are fused in either ELINT or COMINT
resulting in a specialised tactical overview. The third level, that
represents the cognitive level, correlates ELINT and COMINT
outputs to a fused SIGINT overview of the situation which is
the basis for mission assessment and management.

In the OODA design, feedback loops modulate operations
of previous tasks, e.g. based on the optimisation (1)–(2). This
holds for all hierarchical control levels: The SIGINT level
adjusts the behaviour of the ELINT and COMINT modules
that in turn modulate individual signal acquisition activities,
always striving to maximise the utility uk. In general, the
OODA feedback loop may be performed at each level of
the data fusion model, i.e. control actions do not necessarily
need to come from the highest level of SIGINT control but
also from subordinate ELINT and COMINT knowledge levels.
Moreover, utility can be provided in different ways, e.g. by
mathematically defined functions for artificial agents (hard
data) or via performance feedback by the operator (soft data).

C. Task Structure of Signal Acquisition

Signal acquisition is the basic skill of the SIGINT hybrid
agent at the low level of the layered JDL information fusion
(Fig. 2). The task structure of signal acquisition can be divided
into four steps, as shown in Fig. 3. First, the EMS is searched
for signals of interest that are defined by the mission objectives
(e.g., confirm the location of a certain platform). Using the
direction of arrival of the collected signals, it is possible to



Fig. 2. Illustration of the abstract SIGINT fusion and control architecture.
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Fig. 3. High-level task model of signal acquisition.

determine the position of the emitter over time, given that the
motion of the observing platform is of higher order than the
emitter’s [11]. The signal itself is analysed for its technical
attributes and tactical information where identified emitter
locations might be used as contextual knowledge. Finally,
the extracted information is integrated with other results and
reported (e.g., the platform is at location x in a defence mode).

III. HUMAN-MACHINE INTEGRATION

A. Resource Allocation Potential

The integration of human and machine resources to a hybrid
agent requires the selective allocation of tasks to the involved
parties [5], [12] to optimise (1)–(2). The level of automation
describes the degree to which a task is executed by a machine
agent. Three basic classes of automation can be identified [12]:

• In manual mode, the human operator performs the task
without automated assistance.

• In supervised mode, the machine agent performs the
task under supervision by the human operator who can
influence the behaviour of the machine.

• In autonomous mode, the machine agent performs the
task on its own while the operator has no possibility to
influence the operation.

In comparison, modern (weak) AI methods often outperform
humans in specialised tasks close to the sensor such as
waveform analysis, while humans provide a broad spectrum of
competencies that are most efficient for high-level tasks such
as strategic reasoning [5]. Human cognition is especially tuned

to fuse heterogeneous information to a joint assessment of the
world, integrating experiences and handling expectations [13]
that are not available to machines. These natural cognitive
capabilities can be supported by human-in-the-loop automa-
tion (supervised mode) for observation and action [3] because
human cognition builds on the organism’s observation-action
capabilities [14]. Orientation and decision may as well be
supported by AI in the form of decision support, however
these tasks benefit largely from natural human cognition that
is integrative and flexible (manual and supervised mode). A
purely autonomous task allocation is almost never a preferred
choice in complex scenarios since unpredictable situations
may decrease the performance of the artificial agent over
time [4]. In addition, in-the-loop control is also central for
understanding machine dynamics [3], [15] (Sec. III-B).

Fig. 2 includes a summary of the expected benefit of human
and machine resource allocations in the fusion and control
architecture. It shows that AI can provide substantial support
on tasks that are closer to the sensor, while high-level tasks in
the JDL model and the related decision making should remain
with human operators. Likewise, the task allocation potential
is highlighted for the signal acquisition model in Fig. 3.

B. Factors for Automation Supervision

The introduction of machine intelligence introduces both a
reduction of operator workload in the form of support and an
overhead in the form of machine supervision [3]. It is therefore
important to understand the contributing factors of machine
supervision [12] in order to judge whether an introduced
automation is actually beneficial to the hybrid agent.

Fig. 4 shows a simplified model of automation supervision
that also follows the OODA-loop. First, the operator actively
interacts with the machine to gain an understanding of its
state (situation awareness) [3], [16]. This requires sufficient
information and possibilities to manipulate the machine agent,
e.g. through dynamic reparametrisation or explainable AI [5],
[17], [18]. Second, based on the observed machine state,
operators calibrate their trust towards the provided results in
accordance with the general automation capabilities. Here,
both under-trust and over-trust may lead to non-optimal hybrid
performance [15]. With over-trust, false machine results might
be used, while under-trust can lead to the dismissal of the
machine agent although its output would be beneficial. In trust
calibration, sufficient human-in-the-loop experience with the
system is essential. Finally, the operator exerts control over the
automation based on the selected trust [3], either by overwrit-
ing automation results or changing machine responsibilities
which should both be integrated in the system design [5].

To summarise, the introduced automation should not only
have a high accuracy, but should also:

• provide information about the state of the automation and
its capabilities (explainability),

• facilitate the calibration of operator trust towards the
automation (human in the loop),

• provide the possibility to manipulate automation opera-
tions (adjustability and control).



Fig. 4. Simplified model of automation supervision

IV. ELECTRONIC INTELLIGENCE

An ELINT system consists of one or more passive receivers
intercepting radar signals for further analysis. Usually, such a
receiver is able to cover at least the frequencies from 2GHz to
18GHz which are divided into bands of the receiver’s instan-
taneous bandwidth. This bandwidth is chosen as a compromise
between probability of intercept, sensitivity, size, weight, and
cost, and ranges from 0.5GHz to 2GHz. When a signal is
received, the measured electromagnetic waves are transcribed
into so-called pulse descriptor words (PDWs) which encode at
least the radio frequency (RF), pulse width, and time of arrival
leading to the respective pulse repetition interval (PRI).

Reconnoitring the full frequency range manually is very
demanding. On the one hand, the spectrum is occupied with
a variety of sources, many of which are irrelevant for the
operation. On the other hand, sources might be relevant but
analysed previously, hence claiming the operator’s attention
regularly without yielding new information. As a result, many
frequencies are monitored redundantly and at once, which
increases the risk of missing relevant signals. In line with
the discussed human-machine resource allocation potential
(Sec. III-A), these shortcomings can be addressed via automa-
tion techniques that adopt repetitive low-level tasks. With this,
the operator potentially gains more time to monitor unusual
activities and perform situation or mission assessment tasks.
Following Fig. 3, this section gives an overview of ELINT-
specific automation methods for signal search and analysis.

A. Radar Signal Search

In order to intercept a radar signal, the ELINT receiver
must be tuned to the correct frequency band at the time it is
illuminated by the radar. If the emitter and ELINT receiver
both use periodic scanning patterns, synchronisation might
occur, i.e. the receiver might always be tuned to a specific
frequency band while the radar is transmitting away from it,
hence impeding an intercept. To maximise the probability of
intercept and avoid synchronisation, approaches for designing
search strategies have been proposed, e.g. [8], [19]–[22].
However, these methods are only useful if the radars to be
intercepted perform a periodic scan of the environment with
a constant RF. If the radar is beam-agile, synchronisation
is very unlikely and hence the probability of intercept does
not depend on the search strategy [22]. An electronically
steered array antenna might even be easier to intercept than
a mechanically rotating radar. Therefore, an automatic signal
search should use a strategy that is optimised to avoid synchro-
nisation with periodically scanning emitters and beam-agile

radars will be intercepted as by-catch. If a frequency-agile
radar with an agility band larger than the ELINT receiver’s
instantaneous bandwidth should be observed over a longer
period of time, information about the expected next emission
is useful to adapt the receiver’s search dwells. The works [23]–
[26] suggest neural-network-based approaches for predicting
upcoming radar signals that could be used for optimisation of
the search strategy and hence aid the operator in gaining a
better overview of the signal spectrum. However, ensuring the
transparency of neural networks is challenging from a human-
machine integration perspective (Sec. III-B). Possible solutions
lie in both global and local approaches to interpretability [17].

B. Radar Signal Analysis

Since more than one emitter might be active simultaneously,
the received PDW stream needs to be deinterleaved first,
i.e. the PDWs need to be sorted by emitter. If available,
bearing measurements facilitate deinterleaving in a first step.
After that, the PDWs are usually sorted by common statistical
properties, see e.g. [27] for an introduction. Deinterleaving is a
necessary step that needs to be completed before the emitters
can be further analysed and classified. Traditional methods
mostly rely on histogram techniques, e.g. [28], [29], which do
not provide satisfactory results if the waveform parameters are
not constant. More recently, methods that use neural networks
for deinterleaving have been proposed, e.g. [30], [31].

A common goal of ELINT analysis is to identify the
emitter type. Traditionally, this is achieved by matching the
parameters of the measured signal against a database. For agile
emitters, several methods based on machine learning have been
proposed, e.g. [23], [26], [32]–[34]. Automatic human-in-the-
loop emitter type identification can decrease the workload of
the operator, who can focus on the signals from those emitters
that are relevant to the mission. Hence, the risk of missing
important signals is reduced. However, automatic emitter type
identification might not always be sufficiently accurate, e.g.
due to a low signal-to-noise ratio (SNR) or the presence of
unknown emitters or signals. Instead, received signals might be
classified according to relevance, e.g. based on decision trees,
without necessarily assigning an ID. Although this requires
manual identification, the workload can be reduced as only
the relevant signals need to be processed.

Usually, classification techniques using neural networks
are trained to recognise a set of known classes. Detecting
that an intercepted signal belongs to an unknown emitter
requires modifications to the usual approach. A possible so-
lution using open set recognition is described in [26], [35].
If a signal unknown to the automatic identification system
is detected, manual analysis can be supported by machine
learning approaches. One example is the automatic recognition
of the PRI modulation which provides useful information
about the possible function and capabilities of the radar. The
publications [36]–[38] present such approaches using neural
networks. As discussed above, it is important to consider the
transparency of the neural network approaches as well [17].



V. COMMUNICATIONS INTELLIGENCE

To extract intelligence information from communication
signals, COMINT operators follow the high-level task model
of SIGINT shown in Fig. 3. The use of machine learning
promises to support the operator. In this section, we discuss
the steps signal search and signal analysis of RF signals.

A. Signal Search

The interception of RF signals poses several challenges.
First, signal impairments like fading due to the radio prop-
agation environment and interfering signals in the same or
adjacent frequency bands have to be considered. Furthermore,
in non-cooperative scenarios, substantial path losses can oc-
cur, resulting in low SNRs and therefore making signals of
interest difficult to detect. Also, low probability of intercept
approaches like spread spectrum techniques may be used by
communication partners for obfuscation purposes.

Signal search can be divided into two subtasks: monitoring
a single RF and searching in a wide frequency band. For both
tasks, there are several automated detection approaches, which
can be extended by AI methods to improve performance [39].
For frequency monitoring, threshold-based energy detectors
are commonly used but often falsely detect interfering signals.
Using a deep neural network to identify the typical waveform
of signals of interest can increase accuracy [39]. Especially for
signal detection in wide frequency bands, signal feature detec-
tors are used in addition to energy detectors [40]. Instead of
being dependent on expert knowledge for the time-consuming
derivation of suitable signal features, neural networks can
learn these characteristics from signal data directly [41]. For
example, AI-based object detection in images can be adapted
to detect and classify signals in broadband spectrograms [42]
which can also provide explainability [17] (Sec. III-B).

B. Signal Analysis: Digital Transmissions

In non-cooperative communications, in-depth signal analy-
sis is necessary to gain signal knowledge. The analysis starts
with recognizing the modulation technique. Then, symbol
rate estimation and synchronisation are necessary to extract
modulation symbols (demodulation) and decode symbols to
bit sequences. When error correction codes are used, error
correction has to be performed as well before interpreting the
bit stream according to the transmission protocol. However,
encryption can prevent extraction of information.

Machine learning can also enhance signal analysis capabil-
ities, e.g. in modulation classification [41], [43]. Moreover,
transformer architectures are able to learn the synchronisation
of RF signals [44]. Many digitally modulated signals are
highly structured due to repeating bit sequences used for syn-
chronisation or resulting from packet headers. Such structures
allow to identify transmission protocols using only raw signal
data without demodulation. Neural networks can learn defining
features of the signal structure which help linking detected
transmissions to known emitters. In addition, approaches for
protocol-agnostic RF device fingerprinting are emerging [45].

C. Signal Analysis: Speech

When analysing communication signals containing speech,
several challenges need to be overcome. Noisy radio trans-
missions result in the loss of information. Moreover, speakers
often have varying dialects and are not cooperative [46]. This
is more challenging for machines in comparison to human
experts who are specifically trained to understand spoken
content in difficult acoustic conditions. However, training
personnel is costly and human resources are usually limited,
making it difficult to analyse all signals in full detail. Here,
automatic systems can help to harness human competences
more efficiently by filtering for relevant information.

Communication signals containing speech can be automat-
ically analysed for specific content with varying degrees of
abstraction. For this purpose, multiple algorithms are com-
bined in a flexible processing chain [47]. Usually, the first
step is to detect the presence of speech, called voice activity
detection [48]. In a second step, voiced segments can be
assigned to languages (language recognition) [49]. Specific
speakers can be searched for (speaker recognition) [50] or
changes of speakers can be detected (speaker diarisation) [51].
Furthermore, one can search for specific keywords (keyword
spotting) [52] or recognise all words being spoken (automatic
speech recognition) [53], [54]. Finally, the recognised text can
be translated from a source to a target language such that
operators can easily understand all spoken content (machine
translation) [55]. Note that these steps get increasingly more
complex and thus more difficult, each requiring more labeled
training data to be able to yield useful results. Especially in the
military domain, acquiring sufficient amounts of training data
in the right acoustic conditions can be difficult to achieve while
ensuring an acceptable level of performance [46]. Therefore,
human cognition should be utilised at the complex steps as
proposed by the resource allocation potential (Sec. III-A).

VI. CONCLUSION AND OUTLOOK

This work discusses possible approaches for AI-supported
signals intelligence. In general, AI support at tasks close
to the sensor is assumed to improve signals intelligence
performance, while higher-level tasks benefit from natural
human cognition. Potential AI support is discussed for both
electronic and communications intelligence. Importantly, the
application of AI should be evaluated not only in terms of
machine performance, but also in its potential for human-
machine integration such as explainability. A central challenge
in SIGINT hybrid agent design is the adaptive allocation of
human and artificial resources.
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