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Abstract
Open-set speaker identification systems first need to decide if an
utterance belongs to one of the known so called blacklist speak-
ers and second identify the exact blacklist speaker. In this paper,
an open-set speaker identification system based on i-vectors is
presented. The system consists of an outlier detector in com-
bination with a classical closed-set speaker identification chain
and utilizes an effective preprocessing technique for i-vectors,
called linear alignment. Its overall structure is justified both
theoretically and experimentally by comparing multiple outlier
detectors. In experimental evaluations, our proposed system
reaches an improvement of 37.5% for the top-S Equal Error
Rate (EER) and a 50% lower top-1 EER over the baseline sys-
tem of the 1st Multi-target speaker detection and identification
Challenge Evaluation and improves upon all other published re-
sults obtained on this dataset.

1. Introduction
An open-set speaker identification system first needs to decide
whether an utterance belongs to one of multiple target speakers
called “blacklist speakers”. In a second step, called top-1 detec-
tion, the system determines to whom of the blacklist speakers
the utterance belongs to. In analogy to that, the first step is re-
ferred to as top-S detection where S denotes the total number
of blacklist speakers. The difficulty of this task is that there
are not only known blacklist speakers and known non-blacklist
speakers, whose data is available when training the system, but
also unknown non-blacklist speakers [1, 2]. Because of that,
the speaker identification system also needs to discriminate the
known blacklist speakers against all possible unknown non-
blacklist speakers, whose data is not available before testing. In
real world applications such as telephone banking or call center
conversations, there are almost no restrictions on who is being
recorded because many people, known customers and strangers,
can call. Hence, it is impossible to gather data of every possi-
ble non-blacklist speaker and thus there will always be speakers
unknown to the identification system. In conclusion, open-set
speaker identification is more challenging but also more real-
istic than closed-set speaker identification. For an overview of
the speaker sets as well as their relations, the reader is referred
to Fig. 1.

Much research has been conducted on closed-set speaker
identification and speaker verification, which can also be seen
as single-target speaker recognition. However, open-set speaker
identification (multi-target speaker recognition) has received
noticeably less attention although open-set related work does
exist [3, 4, 5, 6]. The fact that closed-set classification is in-
herently easier to solve than open-set classification and that
speaker verification is strongly promoted through the NIST
Speaker Recognition Evaluation Challenge [7] are probably
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Figure 1: Overview of the different speaker sets.

among the reasons of why this is the case. Previous work on
open-set speaker identification often focuses on score normal-
ization techniques [8, 9, 10], which is one possible way to cal-
ibrate scores. Score calibration [11, 12] means to map scores
to log-likelihood ratios such that a single value can be com-
pared to a fixed decision threshold and is particularly important
in speaker verification.

A challenge specifically targeted at open-set speaker iden-
tification is the “1st Multi-target speaker detection and identi-
fication Challenge Evaluation” (MCE 2018) [13]. Its dataset
consists of customer-agent call-center conversations in the form
of i-vectors [14] rather than audio files because of privacy con-
cerns, although this prevents the usage of deep speaker embed-
dings as x-vectors [15]. The baseline system of the MCE chal-
lenge is described in [16]. It uses a nearest neighbor approach
via cosine similarity in combination with Multi-Target Score
Normalization (M-Norm). Hence, none of the non-blacklist
speakers is used for training the system. In fact, only the M-
Norm parameters, which are derived from the blacklist speak-
ers exclusively, need to be “trained”. The two top-performing
systems submitted to the challenge both consist of Probablis-
tic Linear Discriminant Analysis (PLDA) [17] in combination
with score normalization and different neural networks. In [18]
a two-stage neural network consisting of a speaker embedding
and a discriminative block is fused with a PLDA model and
background i-vectors are randomly augmented with blacklist i-
vectors via a weighted sum. Font [19] applies a denoising au-
toencoder for preprocessing the i-vectors before inserting them
into a PLDA-based speaker identification system.

The main contributions of this paper are the following: First
and foremost, we present an open-set speaker identification sys-
tem1 for i-vectors, which performs significantly better than the
baseline system of the MCE challenge and all other published

1An open source Python implementation of our proposed system is
available here: https://github.com/wilkinghoff/mce2018



systems evaluated on the same dataset. Second, we theoretically
motivate the system’s overall structure and justify its choice
by presenting and evaluating multiple outlier detection models.
As a third contribution, a simple preprocessing technique for
i-vectors, called linear alignment, is presented whose effective-
ness is shown in additional experiments.

2. The speaker identification system
2.1. Motivating the system’s structure

Let x ∈ RD be an i-vector and yi be the label of blacklist
speaker i ∈ {1, ...,M}. Then, predicting the most likely black-
list speaker can be formalized as

argmax
i∈{1,...,M}

P (Y = yi,B = true∣X = x) (1)

where Y,B,X denote random variables. Here, Y corresponds
to blacklist speaker labels, X to the observed data and B is a
binary random variable indicating whether the data belongs to
one of the blacklist speakers or not. We will now rewrite this
equation to gain more insights on how to tackle the problem.

The chain rule for probabilities implies that

P (Y = yi,B = true,X = x)
=P (Y = yi∣B = true,X = x)P (B = true∣X = x)P (X = x).

(2)
Hence, we obtain

P (Y = yi,B = true∣X = x)
=P (Y = yi∣B = true,X = x)P (B = true∣X = x). (3)

The first term of the right hand side is the posterior probability
that needs to be estimated in closed-set classification problems.
Note that the silent assumption that the data belongs to a known
class is explicitly stated in contrast to the usual notation. Deter-
mining the second term of the right hand side is called outlier
detection [20]. In conclusion, open-set classification can be de-
composed into two subtasks: 1) closed-set classification and 2)
outlier detection. Intuitively, this also makes sense since one
needs to decide whether a sample belongs to any known class
(outlier detection) and, if this is the case, output the correct class
(closed-set classification).

2.2. Closed-set classification

For most classification problems, much research has been con-
ducted in the closed-set setting, which led to many well-
working techniques. Speaker identification is not an exception.
Therefore, setting up a subsystem for closed-set speaker identi-
fication is straight forward. Since the speech data comes in the
form of i-vectors, the options to recognize speakers with them
are fairly limited. Traditionally, one can use cosine similarity
for comparing i-vectors as done in the baseline system. Bet-
ter performing techniques such as Linear Discriminant Analysis
(LDA) and Probablistic Linear Discriminant Analysis (PLDA)
[17] are the state-of-the-art for closed-set speaker identifica-
tion with i-vectors. In our system, both techniques are used
as follows. First, an LDA model of dimension 600 is trained
with Scikit-learn [21] to discriminate among the 3631 blacklist
speaker classes. Then, all LDA projected i-vectors are length
normalized before applying two-covariance PLDA [22, 23] as
implemented in [24]. The PLDA model is trained for 20 itera-
tions. For identification, the blacklist speaker belonging to the
maximum score is chosen (maximum likelihood).

Accepting or rejecting utterances based on a fixed decision
threshold requires all scores to be calibrated appropriately. One
possibility to do this is to normalize the scores. An overview of
score normalization techniques can be found in [25]. In exper-
iments conducted in this paper, Adaptive Symmetric Normal-
ization (AS-Norm) [26, 27] is found to be the best performing
one. Moreover, it has been successfully applied in an open-set
speaker identification setting [18, 19]. AS-Norm makes use of
a set of utterances, called cohort, to normalize the scores. More
concretely, AS-Norm is defined as

s(e, t)as-norm ∶=
1

2
(
s(e, t) − µ(s(e,Ctop(e,n1)))

σ(s(e,Ctop(e,n1)))

+
s(e, t) − µ(s(t,Ctop(t,n2)))

σ(s(t,Ctop(t,n2)))
)

(4)

where s(e, t) denotes the score between enrolment utterance e
and test utterance t, and µ and σ denote mean and standard devi-
ation of the scores, respectively. Furthermore, Ctop(e,n1) denotes
the n1 ∈ N utterances {ck ∈ C ∶ k = 1, ..., n1} of the cohort C
with highest scores s(e, ck) (Ctop(t,n2) is defined analogously).
For closed-set speaker identification, it is sufficient to learn to
discriminate among the known blacklist speakers because it is a
priori known that one of them must be present. Since data from
non-blacklist speakers does not contain information about the
blacklist speakers, this data does not contain any helpful infor-
mation when training a discriminative model to decide to whom
of the blacklist speakers a given utterance corresponds to. Thus,
the whole closed-set classification chain is trained without the
usage of any non-blacklist speaker and consequently the cohort
consists of all files belonging to blacklist speakers only, as also
proposed in [18]. In our experiments, n1 = 700 and n2 = 9000
have been used as cohort sizes. These values have been deter-
mined by maximizing the performance on the development set.

2.3. Outlier detection

In the following, we will present a few possible models for de-
tecting outliers whose performance will be evaluated later. We
will see that some models (obviously) fail to improve upon the
baseline system. Nevertheless, we included them here because
negative results are still valuable results.

2.3.1. Cosine-similarity based model

A good starting point for outlier detection is the baseline model
[16]. It measures the cosine similarity of a test i-vector to each
speaker’s mean i-vector. In addition to that, M-Norm is applied
to the scores. This means that the cosine similarities between
the speakers’ mean i-vectors and all training i-vectors that be-
long to some blacklist speaker are computed first. Then, all
scores are normalized by subtracting the mean and dividing by
the standard deviation of these blacklist scores. In all of our ex-
periments, we only centered the scores with the mean as this led
to slightly better results. Note, that the organizers of the chal-
lenge also noticed this behavior on the development set but still
used regular M-Norm for the baseline system. After that, the
highest score, which corresponds to the most similar i-vector,
is taken as a result. Finally, this nearest neighbor score is com-
pared to a threshold to either accept the i-vector as belonging to
one of the blacklist speakers or not.



2.3.2. PLDA-based model

PLDA is the state-of-the-art back-end technique in speaker ver-
ification and thus also suitable for detecting outliers. As done
for closed-set classification, we trained a two-covariance PLDA
model for 20 iterations. Again, AS-Norm (see Eq. 4) with
n1 = 2800 and n2 = 600, which have been determined by
minimizing the top-S Equal Error Rate (EER) on the devel-
opment set, has been applied. But in contrast to the closed-
set PLDA model, we used all available files (both blacklist and
background) for training the model. We will show later that
this is indeed beneficial. Furthermore, the cohort consists of
all background files instead of the files belonging to blacklist
speakers.

2.3.3. Autoencoder

Another way to detect outliers is to utilize an autoencoder
[28]. This autoencoder is trained in an unsupervised manner
to encode the i-vectors belonging to the blacklist speakers to
a smaller dimension and reconstruct them again. When actu-
ally trying to detect outliers, the assumption is that i-vectors
belonging to known blacklist speakers have a relatively low re-
construction error whereas non-blacklist speakers cannot be re-
constructed sufficiently well. Hence, the reconstruction error
serves as a score for outlier detection.

Another possibility to train the autoencoder is to decode
to the corresponding blacklist speakers’ mean i-vectors instead
of reconstructing the i-vectors themselves. This can also be
viewed as a denoising autoencoder where means of i-vectors
serve as estimates of the true i-vectors representing the black-
list speakers. Note that transforming i-vectors with a denoising
autoencoder has been shown to be an effective preprocessing
technique for speaker identification [19, 29, 30].

Table 1: Architecture of the autoencoder.
Layer Output Shape #Parameters

Input 600 0
Dropout (0.5) 600 0
Length normalization 600 0
Dense (Leaky ReLU: 0.01) 500 300,500
Dense (Leaky ReLU: 0.01) 400 200,400
Dense (Leaky ReLU: 0.01) 300 120,300
Dense (Leaky ReLU: 0.01) 200 60,200
Dense (Leaky ReLU: 0.01) 300 60,300
Dense (Leaky ReLU: 0.01) 400 120,400
Dense (Leaky ReLU: 0.01) 500 200,500
Dense (Leaky ReLU: 0.01) 600 300,600

∑ 1,363,200

The structure of the autoencoder we used is shown in Tab.
1 and has been designed by optimizing the performance on the
development set. Since there are not many samples of i-vectors
per blacklist speaker, training a separate autoencoder for each
blacklist speaker leads to serious overfitting and results in a
poor performance. Thus, all blacklist speakers were treated as
belonging to one “blacklist” class. To reduce the overfitting ef-
fects even more, we used dropout [31] and a length normaliza-
tion layer afterwards. The autoencoder is trained by minimizing
the cosine similarity between the input i-vectors and their recon-
structions for 1000 epochs. It is implemented with Tensorflow
[32] and Keras [33]. We also experimented with a Variational

Autoencoder [34] but this did not result in a better performance
than a regular autoencoder.

2.3.4. A naive discriminative model

In contrast to the previously described models, the follow-
ing model is trained to directly discriminate between the two
speaker classes “blacklist” and “non-blacklist” by using exam-
ples of non-blacklist speakers. Here, the underlying assumption
is that the variability of all non-blacklist speakers is sufficiently
captured by the samples of non-blacklist speakers provided for
training. Thus, the model learns to discriminate between black-
list and non-blacklist speakers. Note that it is well known that
this is not a valid assumption because there is nothing inher-
ent to the blacklist speakers that separates them from the non-
blacklist speakers.

For detecting the blacklist speakers, first an LDA model is
trained on the blacklist speaker classes plus one additional class
corresponding to the non-blacklist speakers. Using this LDA
model, the dimension of the i-vectors is reduced to a relatively
small value of 40. This particular dimension has been chosen
because it yielded the lowest top-S EER when evaluating on the
development set. Then, a two-class SVM with RBF-kernels as
implemented in Scikit-learn [21] is trained using the parameter
settings C = 1 and γ = 0.01. This SVM also outputs probabil-
ities for each i-vector stating how likely it is that this i-vector
belongs to any of the blacklist speakers. As it is done with the
baseline model, these probabilities are then utilized as scores to
either accept or reject an i-vector by using a threshold.

2.4. Putting it together

The structure of our proposed speaker identification system can
be found in Fig. 2. Its fundamental idea is to use an effec-
tive preprocessing along with an ensemble of scores derived
from the PLDA-based outlier detection model and the closed-
set speaker classification chain has been described in Sec. 2.2.
The preprocessing consist of linear alignment, which will be
described in the following paragraph, and length normalization.
After that, our ensembling strategy will be presented.

2.4.1. Linear alignment

The goal of linear alignment is to improve the outlier detection
capabilities by reducing intra-class variability of the blacklist
speakers. Inter-class variability does not need to be reduced be-
cause it is simply not important when detecting outliers. Thus,
linear alignment is less restricted when reducing intra-class
variability than LDA where inter-class variability is also min-
imized. To reduce intra-class variability, an affine transforma-
tion is estimated that minimizes the Euclidean distance between
all blacklist i-vectors and their corresponding speaker’s mean i-
vector. In mathematical terms, this corresponds to solving

argmin
A∈RD×D,b∈RD

M

∑
i=1

Ni

∑
j=1
∥Axij + b −

1

Ni

Ni

∑
k=1

xik∥
2

(5)

where xij ∈ RD denotes the jth of the Ni i-vectors belonging
to blacklist speaker i ∈ {1, ...,M}. For this purpose, a single-
layered neural network with no nonlinearity has been trained by
minimizing the mean squared error for 400 epochs to estimate
the linear transformation. Although one can also use a deeper
neural network structure with nonlinearities and multiple hid-
den layers, this did not improve but degrade the performance.
A probable reason for this behavior is overfitting caused by the
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Figure 2: Structure of our proposed speaker identification system.

small number of samples per blacklist speaker. A similar be-
havior has been reported in [19] where a denoising autoencoder
with a single hidden layer instead of multiple ones is used for
preprocessing the i-vectors. We also experimented with adding
this autoencoder to our system, but, surprisingly, this degraded
the performance instead of improving it.

2.4.2. Ensembling strategy

Although the closed-set classification chain and PLDA-based
outlier detection model are sufficient for open-set classification,
a bit of performance can be gained by ensembling additional
scores. The general idea is that utterances, which are very dif-
ferent from anything a model has been trained with, are more
likely to be an outlier (i.e. belong to a background speaker)
than being uttered by a blacklist speaker. Therefore, any given
utterance has been evaluated against all available training files
(both, background and blacklist) using the PLDA-based outlier
detection model and against all blacklist files using the closed-
set PLDA model. After that, the maximum of each of these
scores and the regular outlier detection scores where taken and
the three maxima were combined via logistic regression whose
objective it is to determine whether an utterance is an outlier
or not. Note, that using such a logistic regression model is a
way of calibrating the scores such that they are suited for being
compared to a threshold.

Training a logistic regression model for score-based fusion
requires realistic scores similar to those obtained with the final
test data [35]. To this end, we trained all models except the
logistic regression model using the training data only and eval-
uated them with the blacklist and background files of the devel-
opment dataset to obtain meaningful scores. These scores are
then used to train the logistic regression model with balanced
class weights and a SAGA solver with L2-regularization as im-
plemented in Scikit-learn [21]. After that, all models but the
logistic regression model are retrained using both the training
and development datasets for final evaluations.

3. Experimental evaluations
3.1. MCE dataset

All experimental evaluations have been conducted on the
dataset of the MCE challenge [13]. This has the following ad-

vantages: First, the dataset is specifically designed for open-set
speaker identification and freely available. Thus, all results can
easily be reproduced. Second, we can compare our results to
those obtained by other systems, namely the baseline system
[16] and the two top-performing systems [19, 18] of the chal-
lenge.

The MCE dataset [13] consists of D = 600 dimensional
i-vectors belonging to M = 3631 blacklist speakers and an un-
known number of non-blacklist speakers, which are extracted
from customer-agent call-center conversations. To train the i-
vector extractor, 13000 hours of unlabeled speech have been
used. Each of the blacklist speakers has exactly 3 occurrences
within the training dataset, which contains 41845 i-vectors in
total. The development set consists of 8631 i-vectors and the
test set consists of 16017. In both sets, each blacklist speaker is
present exactly once. But note that for the test set this is not a
priori knowledge and thus should not be used when developing
or training the system.

3.2. A comparison of the individual outlier detectors

We will now evaluate and compare all individual models. This
has the following two purposes: First, we can justify our choice
of models and determine which single model is most successful
in detecting outliers and second, the results can be compared
later to those obtained with the whole ensemble. For all eval-
uations, we utilized the development set as additional training
data when training the system for evaluations with the test set.

The top-S EERs obtained with the individual models are
depicted in Fig. 3. First, one can observe that the top-S EERs
on the development set are all relatively small whereas on the
test set, all EERs and the difference between them are gener-
ally higher. This seems only natural, since all models have
been designed and fine-tuned in order to perform well on the
development set. But interestingly, the cosine similarity based
model requires no training and also performs much worse on the
test set, which consists of 16017 files. Hence, it seems that the
results obtained on the smaller development set (3631 + 5000
files) are less reliable and probably a bit too optimistic. As the
cosine distance can be understood as a measure of similarity,
this also indicates that the non-blacklist samples of the develop-
ment set are “more different” from the blacklist speakers than
the ones of the test set.
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Figure 3: Comparison of top-S Equal Error Rates obtained with
individual outlier detectors without using linear alignment.

Another observation to be made is that the LDA-SVM-
based model and the autoencoders have much higher top-S
EERs than the simple cosine similarity-based model. As stated
before, it is well-known that naively training a discriminative
classifier with samples of non-blacklist speakers does not work
well. Thus, the only surprise is that we were able to achieve
a very low top-S EER on the development set when using the
SVM for that exact purpose. Furthermore, both autoencoders
do not have enough samples per blacklist speaker in order to
perform well on both datasets.

In contrast to the previously discussed models, the PLDA-
based outlier detector yields significant performance gains over
using the cosine similarity. Since PLDA is the state-of-the-
art backend in speaker identification with i-vectors, this is not
too surprising. What can be found interesting is that training
with samples of non-blacklist speakers actually improves per-
formance on the development set although these samples do not
sufficiently cover the whole non-blacklist speaker space. How-
ever, having more training data at hand results in more accurate
estimates of the PLDA parameters, and thus, leads to better re-
sults. Interestingly, the top-S EERs obtained with the test set
are about the same for both PLDA models. Still, when consid-
ering the performances on both sets it seems to be beneficial
to train with samples of non-blacklist speakers, which are also
used for AS-Norm and thus needed anyway.

3.3. The effects of linear alignment

As shown in Fig. 4, almost all top-S and top-1 EERs are de-
creasing on both the development and the test set when apply-
ing linear alignment. Especially when using cosine similarity
the benefits are immense. This makes linear alignment a highly
beneficial preprocessing technique. The only exception is the
top-S EER obtained on the development set with the PLDA-
based model, which is about the same with and without apply-
ing linear alignment.

Linear alignment strongly resembles the effect of LDA
or within-class covariance normalization (WCCN) [36, 37] by
minimizing intra-class variability. Because of this, LDA and
WCCN have also been evaluated as preprocessing techniques
to be able to compare all approaches in terms of performance.
There are two observations to be made: First of all, apply-
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ing LDA massively degrades the performance. The reason is
that not only intra-class variability is minimized but also the
inter-class variability leading to unwanted effects when trying
to detect outliers. Second, applying WCCN to preprocess the i-
vectors also improves the performance but not as much as linear
alignment.

3.4. Evaluating the performance of our proposed system

In Fig. 5, we compared the EERs obtained with our system to
the ones of the baseline system and the two top-performing sys-
tems of the MCE challenge [18, 19]. More precisely, our sys-
tem is evaluated in two configurations: using the PLDA-based
outlier detector only (right of center) and using the ensemble of



outlier detectors (far right). First of all, both versions of our sys-
tem as well as Font [19] and Pindrop [18], perform much better
than the baseline system. In fact, the top-S EER is 37.5% lower
and the top-1 EER is 50% lower when comparing the baseline
system to our ensembled version. In addition, our single model-
based system yields about the same performance as Font [19]
and Pindrop [18]. The only exception, is the development set
top-1 EER obtained by Pindrop, which is significantly lower.

In contrast to that, our ensembled system has a much lower
top-S and top-1 EER on the test set than both our single model-
based system, Font [19] and Pindrop [18]. However, in this case
ensembling multiple scores also massively degrades the top-S
EER on the development set when comparing it to the single
model. A possible explanation is that the very low top-S EER of
1.16% obtained with the PLDA-based outlier detector alone is
hard to preserve when fusing with scores, which, by themselves,
lead to much worse results. But since the corresponding top-
1 EER stays the same and both EERs drastically improve on
the test dataset, this at least indicates that the scores contain
complementary information. Thus, ensembling the scores the
way we proposed still seems to be highly beneficial.

4. Conclusions and future work
In this paper, we presented a freely available open-set speaker
identification system for i-vectors and theoretically motivated
its structure. It consists of an effective preprocessing technique,
called linear alignment, in combination with an ensemble of
outlier detectors and a fairly standard closed-set speaker identi-
fication chain. In experimental evaluations, it was shown that
linear alignment is highly beneficial. Furthermore, multiple
models for outlier detection have been presented and evaluated,
which justifies the choice of models used in our system. In
conclusion, our open-set speaker identification system greatly
outperforms the baseline system of the MCE 2018 challenge.
More concretely, its top-S EER is 37.5% and the top-1 EER is
50% lower than the corresponding ones obtained with the base-
line system. Moreover, the obtained performance is even better
than all previously published results on the same dataset we are
aware of.

In the near future, we plan to examine the following aug-
mentations of the presented system, possibly leading to an even
better performance: Since LDA plays a fundamental role in
closed-set identification, it may be beneficial to replace it with
Deep LDA [38], which is reported to have a better performance
than LDA. An additional improvement of the closed-set clas-
sification chain may be accomplished by using discriminative
PLDA with SVMs as presented in [39, 40]. Furthermore, addi-
tional experiments carried out on larger datasets with available
audio files are necessary to evaluate the presented system with
other speaker embeddings as for example x-vectors [15].
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sis of score normalization in multilingual speaker recogni-
tion.,” in Annual Conference of the International Speech
Communication Association (INTERSPEECH), 2017, pp.
1567–1571.

[26] Sandro Cumani, Pier Domenico Batzu, Daniele Coli-
bro, Claudio Vair, Pietro Laface, and Vasileios Vasi-
lakakis, “Comparison of speaker recognition approaches
for real applications,” in Annual Conference of the In-
ternational Speech Communication Association (INTER-
SPEECH), 2011, pp. 2365–2368.

[27] Zahi N Karam, William M Campbell, and Najim Dehak,
“Towards reduced false-alarms using cohorts,” in Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). IEEE, 2011, pp. 4512–4515.

[28] Simon Hawkins, Hongxing He, Graham Williams, and
Rohan Baxter, “Outlier detection using replicator neural

networks,” in International Conference on Data Ware-
housing and Knowledge Discovery. Springer, 2002, pp.
170–180.

[29] Shivangi Mahto, Hitoshi Yamamoto, and Takafumi Koshi-
naka, “i-vector transformation using a novel discrimina-
tive denoising autoencoder for noise-robust speaker recog-
nition.,” in Annual Conference of the International Speech
Communication Association (INTERSPEECH), 2017, pp.
3722–3726.

[30] Suwon Shon, Seongkyu Mun, Wooil Kim, and Hanseok
Ko, “Autoencoder based domain adaptation for speaker
recognition under insufficient channel information,” in
Annual Conference of the International Speech Commu-
nication Association (INTERSPEECH), 2017, vol. 2017,
pp. 1014–1018.

[31] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov, “Dropout: a sim-
ple way to prevent neural networks from overfitting,” The
Journal of Machine Learning Research, vol. 15, no. 1, pp.
1929–1958, 2014.

[32] Martin Abadi et al., “Tensorflow: A system for large-scale
machine learning,” OSDI, vol. 16, pp. 265–283, 2016.

[33] François Chollet et al., “Keras,” https://keras.io, 2015.

[34] Diederik P. Kingma and Max Welling, “Auto-encoding
variational Bayes,” in International Conference on Learn-
ing Representations (ICLR), 2014.

[35] Kevin Wilkinghoff, Paul M. Baggenstoss, Alessia
Cornaggia-Urrigshardt, and Frank Kurth, “Robust speaker
identification by fusing classification scores with a neural
network,” in 13th ITG Symposium on Speech Communi-
cation. 2018, pp. 261–265, VDE-Verlag.

[36] Andrew O. Hatch and Andreas Stolcke, “Generalized lin-
ear kernels for one-versus-all classification: Application
to speaker recognition,” in International Conference on
Acoustics Speech and Signal Processing (ICASSP). 2006,
pp. 585–588, IEEE.

[37] Andrew O. Hatch, Sachin S. Kajarekar, and Andreas Stol-
cke, “Within-class covariance normalization for svm-
based speaker recognition,” in 9th International Con-
ference on Spoken Language Processing (ICSLP). 2006,
ISCA.

[38] Matthias Dorfer, Rainer Kelz, and Gerhard Widmer,
“Deep linear discriminant analysis,” in International Con-
ference on Learning Representations (ICLR), 2015.

[39] Sandro Cumani, Niko Brümmer, Lukáš Burget, and Pietro
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