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Abstract
State-of-the-art keyword spotting systems consist of neu-
ral networks trained as classifiers or trained to extract dis-
criminative representations, so-called embeddings. How-
ever, a sufficient amount of labeled data is needed to train
such a system. Dynamic time warping is another keyword
spotting approach that uses only a single sample of each
keyword as patterns to be searched and thus does not re-
quire any training. In this work, we propose to combine
the strengths of both keyword spotting approaches in two
ways: First, an angular margin loss for training a neu-
ral network to extract two-dimensional embeddings is pre-
sented. It is shown that these embeddings can be used as
features for dynamic time warping, outperforming cepstral
features even when very few training samples are available.
Second, dynamic time warping is applied to cepstral fea-
tures to turn weak into strong labels and thus provide more
labeled training data for the two-dimensional embeddings.

1 Introduction
The goal of keyword spotting (KWS) is to detect specific
keywords from a small application-dependent set of words
in audio recordings. Therefore, large parts of the audio
recordings are not of interest because they do not contain
these keywords. In contrast to large-vocabulary continu-
ous speech recognition systems that transcribe all words
being spoken and thus are also able to detect a specified
subset of keywords, keyword spotting systems require less
labeled training data and less computational power. This
is advantageous for speech recognition applications with a
restricted vocabulary where only limited resources in terms
of data and computational power are available. Examples
are rarely spoken languages for which only insufficient la-
beled data is available [1], and difficult (acoustic) environ-
ments where labeled data recorded under the same acoustic
conditions and also computational power is restricted [2].

An unsupervised approach to detect keywords in audio
recordings is to use dynamic time warping (DTW) [3, 4].
Its fundamental idea is to search for a set of provided key-
words represented as features that do not require any train-
ing in an audio file. This is called query-by-example KWS
and has the advantage that no training is needed and it thus
works with very limited amounts of data. When at least
some labeled data is available, many KWS systems are
trained to extract discriminative representations, so-called
embeddings, from audio recordings. In [5], it has been
shown that supervised embeddings extracted with linear
discriminant analysis and graph embeddings outperform
unsupervised embeddings and DTW-based KWS systems.
Other works utilize different types of neural networks to
extract embeddings, for example (Siamese) convolutional
neural networks (CNNs) [6], CNNs trained by minimiz-
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ing an additive angular margin loss [7] or long-short term
memory networks (LSTMs) [8, 9]. Using a simple sliding
window in combination with these discriminative embed-
dings has been shown to outperform unsupervised DTW-
based approaches. However, most of these systems, es-
pecially LSTM-based ones, require much labeled training
data in order to work well. In [9], 1115 hours of speech
and in [8] 2500 hours of speech are used for training the
LSTM-based embeddings. To circumvent this problem,
Menon et al. used only 34 minutes of labeled speech to
generate labels with a DTW-based approach for a larger
unlabeled dataset, which then was used to train a CNN [1].
Another drawback of using supervised embeddings is that
a fixed-sized sliding window is less accurate than DTW
when prediciting the exact on- and offset of detections.
This is especially problematic for applications where se-
quences of keywords and their order need to be recognized.
Examples are telephone numbers, PINs or more generally
passwords or -phrases, coordinates or spelled words.

The goal of this work is to combine the strengths of
both KWS approaches. To this end, an angular margin
loss for learning two-dimensional embeddings and a DTW-
based system utilizing these embeddings for spotting se-
quences of keywords are proposed. The presented sys-
tem is evaluated on an internal dataset recorded at Fraun-
hofer FKIE consisting of spoken coordinates in German
and a very small training set of less than 7 minutes. It
is shown that the presented two-dimensional embeddings
outperform cepstral features, more precisely human factor
cepstral coefficients (HFCC-ENS) [4]. In additional ex-
periments, cepstrum-based DTW is used to automatically
convert weak into strong labels by predicting on- and off-
set of keywords that are known to be present in a record-
ing. When providing these automatically labeled data as
additional training data, the performance obtained with the
two-dimensional embeddings is significantly improved.

2 Methodology
2.1 Two-dimensional AdaCos loss
Embeddings obtained by minimizing an angular margin
loss function such as ArcFace [10] have been shown to out-
perform other embeddings and yield state-of-the-art clas-
sification performances. The angular margin loss Ada-
Cos [11] does not depend on any hyperparameters to be
tuned but uses an adaptive scale parameter while perform-
ing equally well as ArcFace. Thus, we propose to modify
AdaCos to learn two-dimensional embeddings suitable for
being used with DTW.

Let xi ∈RTi×D be an embedding belonging to keyword
k of the K ∈N keywords with time dimension Ti and fea-
ture dimension D. In standard one-dimensional AdaCos,
mean values are learned for each class such that the co-
sine similarities of all samples to their corresponding class



means are maximized while the cosine similarities to other
class means are minimized. Moreover, a margin between
the classes is ensured. For two-dimensional AdaCos, a set
of T ∈ N embeddings Ek ⊂ RD instead of a single mean
embedding is learned for each keyword. Then, the cosine
angle θi,k ∈ [0,π] between xi and Ek is defined through

cosθi,k =
1
Ti

Ti

∑

t=1
max
ej∈Ek

⟨xi,t,ej⟩

∥xi,t∥2∥ej∥2
. (1)

This definition of the angle is the only difference of the
two-dimensional AdaCos to the regular one-dimensional
loss. Therefore, the probability of sample xi belonging to
keyword j is still given by

Pi,j ∶=
exp(s̃ ⋅cosθi,j)

∑
K
k=1 exp(s̃ ⋅cosθi,k)

(2)

with the standard adaptive scale parameter s̃ (see [11]).
To ensure that all audio samples of keywords used to

train the neural network are of length 0.5 seconds, shorter
samples are zero-padded and a sliding window of size 0.5
seconds and a step size of 0.1 seconds is used for longer
samples. To obtain two-dimensional embeddings for the
test sentences, which are much longer than 0.5 seconds,
first a sliding window of size 0.5 seconds with a hop size of
1/T is used to compute another embedding for each win-
dow position. Then, all embeddings belonging to a single
test recording are combined into one longer embedding by
taking the mean of all 1×D-dimensional vectors of the
embeddings for which their corresponding windows over-
lap at a given position.

To obtain a database consisting of a single represen-
tation for each keyword, the DTW barycenter averaging
(DBA) algorithm [12] as implemented in [13] is used. In-
stead of computing a regular Euclidean mean of all sam-
ples belonging to a single keyword, which minimizes the
Euclidean distance, this algorithm estimates the more gen-
eral Fréchet mean that minimizes the distance implied by
DTW. As a result, the examples stored in the keyword
database are more similar to corresponding keyword sam-
ples when searching for a keyword with DTW and thus the
performance is improved.

2.2 Network architecture
The architecture of the neural network used for extract-
ing two-dimensional embeddings is shown in Tab. 1. It
consists of a modified ResNet architecture [14] in combi-
nation with the 2D AdaCos loss and, except for the loss
function, strongly resembles the architecture used in [15].
Each residual block includes batch normalization layers
[16] and LeakyReLu [17] with α = 0.1 as nonlinearities.
As input to the neural network, log-Mel spectrograms with
64 Mel-bins, a window size of 1024 and a hop size of 256
are extracted from raw waveforms of length 0.5 seconds,
resulting in features of size 32×64. To avoid overfitting of
the model to the limited amount of training data, two data
augmentation techniques are used: 1) SpecAugment [18],
which consists of frequency masking, time masking and
time warping, and 2) mixup [19], more precisely manifold
mixup [20], for random linear interpolations between hid-
den representations of training data. To take the usage of
mixup into account when minimizing the two-dimensional
AdaCos loss while training, the extension presented in [15]
is used. In all experiments, the network, implemented in

layer name structure output size

input - 32×64

residual block (
3×3
3×3)×2, stride= 1×1 32×64×16

residual block (
3×3
3×3)×2, stride= 1×2 32×32×32

residual block (
3×3
3×3)×2, stride= 1×2 32×16×64

residual block (
3×3
3×3)×2, stride= 1×2 32×8×128

max pooling 1×8, stride= 1×1 32×128
dense (representation) linear 32×32
2D AdaCos - 38

Table 1: Modified ResNet architecture used for extracting
two-dimensional embeddings.

Tensorflow [21], is trained for 1000 epochs with a batch
size of 32 using Adam [22] for optimization.

2.3 Voice activity detection (VAD)
A pre-processing step for analyzing long audio recordings
or a post-processing step to refine the results of the pro-
posed KWS system (cf. Sec. 2.4) is a Voice Activity De-
tection (VAD) algorithm. We propose a VAD based on a
combination of spectral energy and two particular audio
features, namely spectral flux and spectral flatness. The
use of energy is restricted to pre-defined frequency sub-
bands, one for low frequencies in the range of 100-1000 Hz
focusing on the tonal components of speech and neglecting
low-frequency noise, and one for higher frequencies in the
range of 5500-8000 Hz to consider e.g. sibilants. In ad-
dition, two audio features, which have been successfully
used for speech detection tasks ([23–25]), are used to cap-
ture the particular characteristics of speech signals. These
features are combined by thresholding the corresponding
feature curves. Thresholds were fixed empirically by eval-
uating the training data. The performance of the VAD eval-
uated on manually labeled training data has a TP-rate of
99.46% and a FP-rate of 0.77%.

2.4 DTW-based keyword spotting (KWS)
In the proposed query-by-example approach, every key-
word and target sentence is represented by a sequence of
feature vectors, a 2D-feature matrix, obtained from the pre-
viously derived embeddings, allowing a frame-wise com-
parison of the target signal with the trained keyword pat-
terns. Let Ki ∈K be the feature representation of keyword
i from the keyword set K and S ∈ S be the corresponding
feature representation of a target signal. To account for
the different lengths of keyword utterances Ki and the se-
quences S, we apply sub-sequence DTW [26, 27] to align
keywords with sub-sequences of the target signal. In clas-
sical DTW approaches, two sequences of feature vectors
are time-aligned by calculating a pair-wise similarity be-
tween all the feature vectors, thus obtaining a cost matrix
C, which is transformed into an accumulated cost matrix D
following pre-defined step size conditions. Sub-sequence
DTW applies the same technique but returns several possi-
ble matchings by extracting local maxima of the resulting
accumulated cost matrix. As opposed to diagonal match-
ing, the step size condition of classical DTW is extended
to larger steps, in our case to {(2,1),(1,1),(1,2)}, to ac-
count for faster and slower speakers. C is calculated us-
ing the inner product of any two feature vectors j and k,



Figure 1: DTW-KENS-KWS: Dynamic Time Warping Keyword Energy Normalized Statistics Keyword Spotting showing
(a) the spectrogram of a target signal (with VAD results indicated by black boxes), (b) the score matrix SDTW , (c) the
enhanced KENS matrix, (d) a manually generated ground truth annotation, and (e) the keyword spotting results.

i.e. SimKi,S
(j,k) ∶= ⟨vKij ,v

S
k⟩/∥v

Ki
j ∥2∥v

S
k∥2, where vKij de-

notes the jth feature vector of a keyword Ki and vSk the kth

the one of a target sentence (cf. [4]). Then C = 1−SimKi,S.

2.5 DTW-KENS-KWS
Instead of extracting paths on the basis of an accumulated
cost matrix for each keyword Ki, we only consider the last
row of D, which can be interpreted as a cost curve and,
by reverting the negation, as a score function si

DTW for a
keyword Ki. All si

DTW are concatenated to a score matrix
SDTW for all Ki ∈K and a given signal S ∈ S, where high
values indicate likely matchings. An example of SDTW is
given in Fig. 1 (b), where red colors indicate a high score.
The y-axis shows the index of the keywords (cf. 3.1).

To enhance the high score regions, we apply a tech-
nique from music processing used to calculate CENS fea-
tures [28, 29], which has also been adopted for keyword
spotting [4] (cf. Sec. 3.2), consisting of normalization and
quantization, smoothing, and downsampling. These op-
erations are applied to the DTW-based score matrix repre-
senting keywords. Hence we refer to the resulting sequence
of post-processed feature vectors by Keyword Energy Nor-
malized Statistics (KENS). An example of this KENS ma-
trix is shown in Fig. 1 (c).

Keyword spotting is performed by picking the column-
wise maxima of the KENS matrix and extracting subblocks
satisfying predefined lengths. Larger blocks are divided
into consecutive matches of the same keyword by consider-
ing personalized average lengths. In addition, the proposed
VAD (Sec. 2.3) is used to adjust the start and end times of
the detected keywords. The VAD results are indicated by
the black boxes in Fig. 1 (a). Furthermore, the results can
be post-processed by using knowledge about the data such
as in the given case of spoken coordinates where letters
only appear at the beginning of blocks of numbers.

3 Experimental Results
3.1 Dataset
The dataset used for all evaluations contained in this pa-
per is an internal dataset recorded by Fraunhofer FKIE.
The corpus consists of read coordinates in the German lan-
guage. All recordings are downsampled to 16kHz and the
annotations have been manually verified twice. The train-
ing subset of the dataset consists of 37 keywords and an
additional class Silence consisting of all six background
noise files of Google Speech Commands [30]. The key-
words are: Acht, Alpha, Bravo, Charlie, Delta, Drei, Echo,
Eins, Foxtrot, Fünf, Fünnef, Golf, Hotel, Ich berichtige,
India, Juliett, Kilo, Korrektur, Korrigiere, Lima, Mike, Mi-
nus, Neun, November, Null, Plus, Quebec, Sechs, Sieben,
Sierra, Tango, Victor, Vier, Whiskey, X-ray, Yankee, Zwo.
These keywords are all read at most once by 12 male and 7
female speakers, 3 of which are non-native. The recordings
were done in different office rooms using standard sound
pressure microphones. As a result, there are 16 to 19 ver-
sions of each keyword for training with a total duration of
less than 7 minutes. For validation and testing, the same
speakers read up to 201 sentences each, resulting in a vali-
dation set with a duration of 179 minutes containing 1723
sentences and a test set with a duration of 240 minutes con-
taining 2090 sentences.

3.2 Comparison of features
As a first experiment, it is shown that the proposed two-
dimensional embeddings outperform classical cepstral fea-
tures. HFCC-ENS features have been shown to outperform
Mel-frequency cepstral coefficients (MFCCs) when detect-
ing keywords with DTW [4]. Therefore, we only consider
the former. HFCC-ENS are computed by applying par-
ticular filterbanks optimized for human audio perception
to spectral feature vectors and then post-processed by nor-



feature loss WER
validation set test set

HFCC-ENS – 0.2533 0.2660
embedding flatten + softmax 0.3118 0.3115
embedding 2D AdaCos 0.2213 0.2100

Table 2: Word error rates obtained with different features.

malization, quantization, smoothing, and downsampling –
a technique applied also in our proposed KWS algorithm
(Sec. 2.5). In our evaluation, we use these features together
with sub-sequence DTW to extract keywords. The results
are post-processed by exploiting domain knowledge, in par-
ticular using keyword lengths and allowing letters only at
the beginning of number clusters. As opposed to the KENS
embeddings approach, several examples of the same per-
sonalized keyword are used for the DTW KWS method.

The resulting WERs can be found in Tab. 2. Recall
that the training dataset is very small and only consists of
less than 7 minutes of speech. Still, the two-dimensional
embeddings extracted with the proposed 2D AdaCos result
in significantly lower WERs than HFCC-ENS features. To
verify that the loss is actually important, the network archi-
tecture was altered by replacing the 2D AdaCos loss with
a flattening operation in combination with a softmax loss.
This led to a much higher WER, even higher than the one
obtained with HFCC-ENS features.

3.3 Turning weak into strong labels
When using data-driven models such as neural networks,
their true power comes from using as much high-quality
training data as possible. Creating weak labels for an un-
labeled dataset is much less time-consuming than strong
labeling because experts can simply listen once and write
down all words while listening instead of stopping for each
word and marking the precise start- and endpoints. How-
ever, weakly labeled data cannot be used to train the pre-
sented neural network because it is only known what is
being said in a sentence but not when the actual words be-
gin or end. Hence, we propose to use DTW with cepstral
features to automatically convert weak into strong labels
and thus create additional training data. Since prior knowl-
edge in the form of weak labels is available, this procedure
should lead to training data of higher quality than when
creating strong labels from scratch as done in [1].

To this end, all the keywords Ki, given by a fixed fea-
ture representation F(Ki) – in our case HFCC-ENS, are
concatenated in the order they appear in a given training
sentence S, also transformed into the corresponding fea-
ture representation F(S), resulting in a super-feature ma-
trix F(K). This matrix is then aligned with the sequence
of feature vectors of S, providing a global start and end
time of the best alignment of the super-keyword K. Know-
ing the length of each sub-keyword Ki allows to sub-divide
the matching result. In order to evaluate the performance
of the automatic segmentation, which is shown in Fig. 2,
we consider the overlap between each resulting segment
and its ground truth. This overlap can be interpreted as a
percentage of the result interval (x-axis) and of the ground
truth (y-axis). The colors indicate the percentage of seg-
ments which are considered correct (in %/100). One ex-
ample is the white point on Fig. 2: 90% of the segments
can be seen as correct, if we require the overlap of a ground
truth segment with the corresponding result segment to be

Figure 2: Performance of the automatic segmentation.

automatically labeled data used for: WERneural network Fréchet mean

0.2100
7 0.1841

7 0.0724
7 7 0.0720

Table 3: Word error rates obtained on the test set using
automatically labeled data as additional training data.

at least 70% of the length of the ground truth and 60% of
the length of the result segment – which for the purpose of
data augmentation may be sufficient. As a result, the total
length of the training dataset is increased from less than 7
minutes to 95 minutes.

The effects of using automatically labeled data as ad-
ditional training data can be found in Tab. 3. As expected,
the WER decreases significantly when using more data for
training. This is especially true for the neural network,
where the WER is reduced by a factor of 3. Hence, the
two-dimensional embeddings improve in representing the
keywords as features when more training data is available.

4 Conclusions and Future Work
In this work, a keyword spotting system capable of de-
tecting sequences of keywords in low-resource settings has
been presented. The system is based on two-dimensional
embeddings obtained by training a neural network with a
novel 2D AdaCos loss and utilizes these embeddings as
features for DTW-based keyword spotting. In experiments
conducted on a coordinate recognition dataset in German
with a training set of less than 7 minutes, it has been shown
that the features lead to a lower WER than HFCC-ENS fea-
tures. Furthermore, a procedure for converting weak into
strong labels has been proposed and shown to significantly
improve the performance of the two-dimensional embed-
dings by generating more training data.

For future work, it can be investigated whether using
soft-DTW [31] inside the AdaCos layer leads to an im-
proved performance of the two-dimensional embeddings
when using DTW. Furthermore, it is planned to conduct
experiments where the two-dimensional embeddings are
used in combination with prototypical networks [32] for
few-shot learning.
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