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Abstract—Obtaining labeled data for machine listening appli-
cations is expensive because labeling audio data requires humans
listening to recordings. However, state-of-the-art deep learning
based systems usually require large amounts of labeled data
to be trained with. A solution for this problem is to train a
neural network with a large collection of unlabeled data to
extract embeddings and then use these embeddings to train a
shallow classifier on a small but labeled dataset suitable for
the application. One example are Look, Listen, and Learn (L3-
Net) embeddings, which are trained self-supervised to capture
audio-visual correspondence in videos. Since shallow classifiers
are trained discriminatively and thus tacitly assume a closed-
set classification task, they do not perform well in open-set
classification tasks. In this paper, a neural network that combines
all L3-Net embeddings belonging to one recording into a single
vector by using an x-vector mechanism as well as an open-set
classification system based on that are presented. In experiments
conducted on the open-set acoustic scene classification task
belonging to the DCASE challenge 2019, the proposed system
significantly outperforms a shallow discriminative classifier and
all other previously published systems, while at the same time
performing equally well as a shallow classifier on multiple closed-
set machine listening datasets.

Index Terms—open-set classification, deep audio embeddings,
machine listening, acoustic scene classification, acoustic event
classification

I. INTRODUCTION

Deep learning based models are the state-of-the-art in
machine listening, whose overall goal in an abstract sense
is to somehow understand audio using machines. Labeling
audio files and using convolutional neural networks (CNNs) as
classifiers on spectral data is by far the most popular approach
[1]–[5]. However, to train these models a large collection
of labeled data is needed. But labeling data is expensive
because it requires listening to recordings and thus needs
experts and takes time. To solve this problem, a large dataset
with unlabeled data can be used to train a neural network
whose task it is to extract embeddings from audio data. These
small dimensional embeddings should contain all information
of the audio file needed for classifying it. Then, a shallow
classifier can be trained on embeddings extracted from a small
dataset with labeled data that is specifically chosen for a single
machine listening application. A popular example are Look,
Listen, and Learn (L3-Net) embeddings [6]–[8] that are trained
to capture audio-visual correspondace in between video frames
and audio clips.

In open-set classification tasks [9], there are not only known
classes to be recognized correctly (closed-set classification) but
also unknown classes, which need to be marked as “unknown”
by the system (outlier detection [10]). The major difficulty is
that not all possible unknown classes are known a priori. Thus,
for such classes no samples can be provided when training, but
instances of that class still need to be rejected when testing.
In conclusion, open-set classification problems are much more
difficult to solve than closed-set classification problems when
the same number of known classes is encountered. However,
for machine listening applications in a realistic environment
open-set problems are much more common since it can only
very rarely be ensured that all possible sounds that may occur
when running the system are previously known. Since shallow
classifiers are trained to discriminate among the known classes
and thus assume that data belongs to one of these known
classes, they perform poorly when trying to detect outliers.
Hence, they are not a suitable backend for L3-net embeddings
in open-set classification settings.

The contributions of this paper are the following: First, a
network for L3-net embeddings that combines all embeddings
belonging to one audio file into a single vector is presented.
On multiple datasets, it is shown that this network provides a
similar performance than the standard shallow MLP classifier
directly trained on L3-net embeddings. Second, based on
this network an open-set classification system for machine
listening applications is presented. In additional experiments
conducted on the open-set acoustic scene classification dataset
of the Detection and Classification of Acoustic Scenes and
Events (DCASE) challenge 2019 [11], it is shown that the
proposed system significantly outperforms a shallow classifier
and all other published systems for open-set classification.

II. L3-NET EMBEDDINGS BACKENDS

A. Look, Listen, and Learn (L3-Net) embeddings

The goal of Look, Listen and Learn (L3-Net) [6] is to
detect audio-visual correspondence between a single video
frame and an audio clip with a duration of 1s. Its overall
structure is depicted in Fig. 1. The L3-net consists of a video
subnetwork and an audio subnetwork, which both consist of
four convolutional blocks with pooling operations and extract
an embedding from a video frame and audio clip, respectively.
To check the correspondence between both embeddings, a
fusion network, which concatenates both embeddings and uses
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Fig. 1. Structure of the L3-net for checking audio-visual correspondence.
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Fig. 2. Structure of the proposed L3-net embedding backend. The blocks
colored in green are needed for closed-set classification. Brown blocks only
need to be considered for open-set classification.

two fully connected layers as well as a softmax layer for binary
classification, is used.

Training the L3-net can be done without annotated data and
only requires a (large) dataset of videos. Positive examples
consist of video frames and the corresponding audio clips from
the same video. Negative examples can be provided by video
frames and audio clips from different videos. After training,
embeddings can be extracted using only the audio subnetwork.

In this paper, a pretrained model (openL3) from [8] is used
to extract L3-net embeddings. The model is pretrained on the
music subset of AudioSet [12] and extracts 512 dimensional
embeddings from overlapping windows with 1s length and
a 0.1s hop size of Mel-spectrograms with 256 Mel bins.
For additional details of openL3, the reader is referred to
[8]. Throughout the paper, all embeddings are normalized by
subtracting the mean and dividing by the standard deviation
of all embeddings belonging to the task-specific training set.

B. Standard closed-set classification backend

A simple model for classifying audio data using L3-net
embeddings is a shallow Multilayer perceptron (MLP) as
presented in [8]. It is trained discriminatively for classifying
single embeddings. The MLP consists of two fully connected
layers of size 512 and 128 with Rectified Linear Units (ReLU)
as propagation functions and an output layer with a softmax
nonlinearity for classification, whose size corresponds to the
total number of classes. To classify an entire audio file, the
mean per class of all resulting scores of the embeddings
belonging to that file is taken. Using this mean, a class can be
predicted for each file via maximum likelihood.

C. X-vector based closed-set classification backend

Open-set classification problems can be decomposed into
two subproblems [13]: 1) outlier detection and 2) closed-set

TABLE I
ARCHITECTURE OF THE NETWORK FOR COMBINING EMBEDDINGS.

Subnetwork Layer Output Shape

Preprocessing Input (T, 512)
Batch normalization (T, 512)
Gaussian noise (standard deviation: 0.1) (T, 512)

X-vector 1D Convolution (kernel size=3, Leaky ReLU: 0.1) (T, 256)
Batch normalization (T, 256)
1D Convolution (kernel size=3, Leaky ReLU: 0.1) (T, 256)
Batch normalization (T, 256)
1D Convolution (kernel size=5, Leaky ReLU: 0.1) (T, 256)
Batch normalization (T, 256)
1D Convolution (kernel size=1, Leaky ReLU: 0.1) (T, 256)
Batch normalization (T, 256)
1D Convolution (kernel size=1, Leaky ReLU: 0.1) (T, 512)
Batch normalization (T, 512)
Mean 512
Standard deviation 512
Concatenation 1024
Dense (Linear) 256
Length normalization 256

Classifier Gaussian noise (standard deviation: 0.1) 256
Leaky ReLU: 0.1 256
Batch normalization 256
Dropout (rate: 0.8) 256
Dense (Leaky ReLU: 0.1) 256
Batch normalization 256
Dropout (rate: 0.5) 256
Dense (Leaky ReLU: 0.1) 128
Batch normalization 128
Dense (Softmax) #Classes

classification. Thus, it is vital that the closed-set performance
of an open-set classification backend for L3-net embeddings is
not worse than the performance obtained with a shallow MLP.
In this subsection, the backend for closed-set classification,
which will be extended to an open-set classification system,
will be presented. Both are depicted in Fig. 2.

The underlying idea is to combine all embeddings belonging
to a single audio file into a single embedding, which is well
suited to discriminate among the classes that appear in a
specific machine listening application. One way to do this is to
use so-called x-vectors [14], which are the state-of-the-art in
speaker recognition and are usually trained on Mel-frequency
cepstral coefficients (MFCCs) [15]. The x-vector subnetwork
of the proposed system consists of five convolutional layers in
time and a statistics pooling layer that outputs the concatena-
tion of mean and standard deviation as a another embedding
called x-vector. To be clear, here the x-vector subnetwork
gathers statistics of L3-net embeddings instead of MFCCs. A
classifier subnetwork is used to incorporate a discriminative
behavior into the x-vectors tailored towards the classes of the
dataset. Tab. I contains all details of the network’s architecture.

Training the network is done by minimizing the categorical
crossentropy with Adam [16] and a batch size of 32. To
effectively increase the amount of training data and prevent
the network from overfitting, the following data augmentation
techniques are used while training. First of all, mixup [17],
which is a linear interpolation between two randomly chosen
training samples, with a mixing coefficient drawn from a
uniform distribution are used. For acoustic event detection,
SpecAugment [18] without time warping, i.e. only frequency
and time masking, has been successfully applied to spectro-
grams [19]. This is the reason why all L3-net embeddings are
masked with 5 frequency masks of size 64 and 10 time masks
both of size 64. Note that L3-net embeddings do not (directly)
contain frequency information and the term frequency mask
is only kept for convenience. Additionally, random circular



shifts of up to 99% in time are applied. To speed up and
stabilize the training process, batch normalization layers [20]
are present throughout the network. For regularization, dropout
[21], Gaussian noise layers with a standard deviation of 0.1
and L2-regularization with a weight of 0.00001 are used.
Additionally, the gradient is weighted inversely proportional
to the number of training samples per class to ensure that
the network is not biased towards classes with more training
samples. All neural networks are implemented using Keras
[22] with Tensorflow [23].

After combining all L3-net embeddings of all files into
x-vectors, a standard classification chain for x-vectors can
be applied. As a first step, the x-vectors are normalized by
subtracting the mean and dividing by the standard deviation
of all x-vectors belonging to the training set. Next, linear
discriminant analysis (LDA) is applied. The goal of LDA is
to reduce the x-vectors’ dimensionality by projecting them
onto a subspace suitable for discriminating among the classes.
Using LDA, the maximum dimension of the subspace is the
number of classes minus 1. Regularized linear discriminant
analysis (RLDA), as described in [24], adds a small number
to the diagonal of the between-class and and within-class
covariance matrices, thus turning them into full rank. This
allows an arbitrary dimension to be chosen for the subspace.
For all experiments, the LDA dimension has been optimized to
reduce the error rate. After that, all LDA projected x-vectors
are length-normalized again. As a last step, a two-covariance
probabilistic linear discriminant analysis (PLDA) model [25],
[26] as implemented in [27] is trained. Let y denote a class
model, which is a vector with the same dimension as an x-
vector, and φ denote an x-vector belonging to that class. Then,
the two-covariance PLDA model is described by the following
equations:

y ∼ N (y|µ,B−1)

φ|y ∼ N (φ|µ,W−1)
(1)

where µ is the class mean, B−1 the inter-class covariance
matrix and W−1 the intra-class covariance matrix. Using this
model, a log-likelihood ratio can be computed that compares
the likelihoods of two x-vectors belonging to the same class or
belonging to different classes. Using mean x-vectors for each
class derived from the training data, one can obtain likelihoods
for each class and decide to which of these classes an x-vector
belongs to by using maximum likelihood.

D. Open-set classification backend

The overall goal of this paper is to present an open-set
classification backend for L3-net embeddings. The PLDA
model returns log-likelihood ratios between the null hypoth-
esis that two x-vectors belong to the same class versus the
alternative hypothesis that both belong to different classes.
Hence, one can easily use a fixed threshold for the resulting
scores and output the class “unknown” whenever all scores
are below that chosen threshold. The same procedure can be
used for the softmax output of the MLP and the x-vector
network. However, as the softmax function models a posterior

probability and tacitly assumes that each test file belongs to
one of the classes, this is not expected to result in a good
outlier detection performance.

Another way to combine the L3-net embeddings is to
take the mean embedding of each file. The resulting mean
embeddings can then be handled the same way as x-vectors.
The major difference to the x-vectors is that the resulting mean
is not trained discriminatively and not adapted to the small
dataset of the application. Therefore, the mean embeddings are
not expected to perform as well as the x-vectors for closed-
set classification. But since discriminative behavior among the
known classes is not useful when detecting outliers and mean
embeddings have an entirely different view on the data than
x-vectors, combining them seems to be beneficial. This is
achieved by simply concatenating both, x-vectors and mean
embeddings, before applying RLDA and PLDA.

To detect outliers, adaptive symmetric normalization (AS-
norm) [28], [29] is applied to the scores resulting from the
PLDA model because this improves the performance in open-
set settings [30], [31]. AS-Norm makes use of a set of files,
called cohort, to normalize the scores and is defined as

s(e, t)as-norm :=
1

2

(
s(e, t)− µ(s(e, Ctop(e,n1)))

σ(s(e, Ctop(e,n1)))

+
s(e, t)− µ(s(t, Ctop(t,n2)))

σ(s(t, Ctop(t,n2)))

) (2)

where s(e, t) denotes the score between mean x-vector e
and test x-vector t, and µ and σ denote mean and standard
deviation of the scores, respectively. Furthermore, Ctop(e,n1)

denotes the n1 ∈ N samples {ck ∈ C : k = 1, ..., n1} of
the cohort C with highest scores s(e, ck) (Ctop(t,n2) is defined
analogously). In the presented system, the cohort consists of
all training files belonging to known classes and n1 = 900
and n2 = 6500 have been used as cohort sizes. These values
have been determined by maximizing the performance on the
validation set. Finally, the scores are calibrated with logistic
regression, as implemented in [32], and a threshold of 0.5 is
used to mark files as “unknown” whenever a score is below
that threshold.

III. EXPERIMENTAL RESULTS

A. Comparison with standard MLP backend
As a first experiment, the performance of the proposed

backend at various output stages will be compared to the one
obtained with the shallow MLP presented in [8]. This is done
to ensure that the x-vector based backend does not perform
worse than a shallow discriminative classifier in closed-set
classification tasks. The following three datasets are being
used for that purpose: UrbanSound8k [33], which contains
urban sound events, ESC-50 [34], containing environmental
sound events, and DCASE 2013 SCD [35], which contains
acoustic scenes. More details about the datasets can be found
in Tab. II. Note that the length of audio files in Urbansound8k
varies. Although the x-vector network is capable of dealing
with varying input sizes, short audio files have been repeated
until a length of 4s is reached.



TABLE II
DATASETS BEING USED FOR COMPARING BACKENDS.

Dataset #Files File Length #Classes Evaluation

UrbanSound8k [33] 8732 ≤ 4 seconds 10 10 cross-validation folds
ESC-50 [34] 2000 5 seconds 50 5 cross-validation folds
DCASE 2013 SCD [35] 200 30 seconds 10 train and test set
DCASE 2019 Task 1C [11] 17050 10 seconds 10+? development and leaderboard set
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Fig. 3. Comparison of classification accuracies obtained with different
backends. The results for the MLP are taken from [8].

The closed-set classification results can be found in Fig.
3. First of all, it can be seen that the performances of the
presented network for extracting x-vectors itself are very close
to the ones obtained with RLDA and PLDA applied to the
x-vectors for all three datasets. When classifying with cosine
similarity, the mean of all x-vectors belonging to a single class
has been used as the reference vector. Since log-likelihood
ratios perform better than the softmax output of discriminative
networks, only PLDA will be considered in the open-set
classification experiments.

Second and more importantly, the performance of the MLP
is roughly the same as the one obtained with x-vectors. But
there are huge differences among the three datasets. For
Urbansound8k, the performance of all approaches is very
close, but the MLP performs sightly better than the x-vector
based systems. The same is true for DCASE 2013 SCD, which
is a very small dataset and only consists of 100 training and
100 test files. On ESC-50, the performance of the x-vector
based systems are significantly better than the shallow MLP.
A probable reason is that ESC-50 contains much more classes
(50) than both of the other datasets, which only contain 10
classes. In sum, an x-vector based system is a suitable closed-
set classification backend for L3-net embeddings.

B. Open-set acoustic scene classification

The open-set classification performance is evaluated with
the dataset belonging to the open-set acoustic scene classifi-
cation task of the DCASE challenge 2019 [11]. The dataset
consists of a development set, which is separated into a
training and validation split, a test set, whose labels have
not been published, and two leaderboard sets, which are still
available on Kaggle and thus are used for the experiments1.
More details about the dataset can be found in Tab. II. The
major difference to the closed-set classification datasets is that

1See https://www.kaggle.com/c/dcase2019-task1c-leaderboard/leaderboard

closed-set
classification accuracy

on validation set

outlier detection
score on

validation set

private leaderboard
score

public leaderboard
score

0

20

40

60

80 73
.0

5%

57
.3

2%

60
.0

00
%

57
.8

33
%

72
.9

5%

73
.7

2%

60
.3

33
%

61
.6

66
%

65
.9

2% 82
.1

2%

61
.8

33
%

63
.5

%73
.7

2%

80
.9

4%

66
.3

33
%

66
.1

66
%

A
cc

ur
ac

y/
Sc

or
e

(i
n

pe
rc

en
t)

MLP [8]
x-vectors with RLDA and PLDA

means of embeddings with RLDA and PLDA
concatenation of x-vectors and means of embeddings with RLDA and PLDA

Fig. 4. Comparison of open-set classification scores obtained with different
backends on the DCASE 2019 Task 1C dataset [11].

there are a 10 known classes and an unknown number of
additional classes that the system has to mark as “unknown”.

The results can be found in Fig. 4. First of all, the x-vector
backend has a slightly higher closed-set classification accuracy
than the simple MLP backend [8]. As emphasized before, the
shallow MLP is not expected to perform well when detecting
outliers. The experimental results validate this well known fact
since the MLP has a much lower outlier detection score on
the validation set than the x-vector backend.

When taking the mean of all L3-net embeddings belonging
to a single audio file, one can see that this yields a significantly
worse closed-set classification accuracy but a significantly
higher outlier detection score than the x-vectors. Since the
x-vectors have been trained discriminatively and obtaining the
mean embeddings requires no training at all, these results were
to be expected. To have all information available in a single
vector, the x-vectors and corresponding mean embeddings
have been concatenated. As a result, these concatenations
significantly outperform both individual components in terms
of closed-set classification accuracy as well as outlier detec-
tion score. Moreover, both scores are higher than any other
submitted system on the Kaggle leaderboards belonging to
the task despite the fact that no ensembling techniques have
been used for the presented system. Nevertheless, the results
clearly show that L3-net embeddings in combination with
the presented backend are a very powerful tool for open-set
machine listening applications.

IV. CONCLUSIONS AND FUTURE WORK

In this work, an open-set classification system for machine
listening applications based on a neural network for combining
L3-net embeddings into x-vectors has been presented. On
multiple datasets, this system performs equally well as a
shallow MLP, directly trained to classify L3-net embeddings,
when used for closed-set classification. Moreover, the pre-
sented system significantly outperforms the MLP as well as
all previously published results on the open-set acoustic scene
classification task of the DCASE challenge 2019.

In the near future, additional experimental evaluations of
the proposed system for open-set classification problems that
are part of the DCASE challenge 2020 will be carried out to



complement the results presented in this paper. Furthermore,
it is planned to experiment with ensembles of L3-net embed-
dings and more traditional CNNs, which are directly trained
on the small dataset belonging to the task at hand. This should
improve the closed-set classification performance significantly
due to the totally different nature of both approaches. Ad-
ditional investigations regarding the influence of the number
of classes on the closed-set classification performance will
also be undertaken, since the proposed backend performed
significantly better then the shallow classifier on ESC50, which
contains 50 instead of 10 classes.
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