
Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

GENERAL-PURPOSE AUDIO TAGGING BY ENSEMBLING CONVOLUTIONAL NEURAL
NETWORKS BASED ON MULTIPLE FEATURES

Kevin Wilkinghoff

Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE
Fraunhoferstraße 20, 53343 Wachtberg, Germany

kevin.wilkinghoff@fkie.fraunhofer.de

ABSTRACT
This paper describes an audio tagging system that participated in
Task 2 “General-purpose audio tagging of Freesound content with
AudioSet labels” of the “Detection and Classification of Acoustic
Scenes and Events (DCASE)” Challenge 2018. The system is an
ensemble consisting of five convolutional neural networks based on
Mel-frequency Cepstral Coefficients, Perceptual Linear Prediction
features, Mel-spectrograms and the raw audio data. For ensem-
bling all models, score-based fusion via Logistic Regression is per-
formed with another neural network. In experimental evaluations,
it is shown that ensembling the models significantly improves upon
the performances obtained with the individual models. As a final
result, the system achieved a Mean Average Precision with Cutoff 3
of 0.9414 on the private leaderboard of the challenge.

Index Terms— audio tagging, acoustic event classification,
convolutional neural network, score-based fusion

1. INTRODUCTION

In past years, deep convolutional neural networks (CNN) or variants
thereof have taken over almost any area related to image classifica-
tion and computer vision in general. As audio data can easily be
converted into images by computing their spectrogram, they have
also become popular for acoustic event detection and classification
[1, 2, 3]. Moreover, CNNs trained on spectrograms are reported
to outperform classical approaches as for example Hidden Markov
Models (HMMs) [4]. In this work, an ensemble of CNNs for the
purpose of acoustic event classification is presented. The ensemble
consists of five different CNNs trained on multiple features derived
from the acoustic data and another neural network used for fusing
the scores. More concretely, Mel-frequency Cepstral Coefficients
(MFCCs) [5], Perceptual Linear Prediction (PLP) features [6], Mel-
spectrograms and the raw data are used as features.

The presented system participated in Task 2 “General-purpose
audio tagging of Freesound content with AudioSet labels” of
the “Detection and Classification of Acoustic Scenes and Events
(DCASE)” challenge 2018. The audio dataset being used consists
of a subset of the Freesound dataset (FSD) [7] which has been
taken from the online database Freesound [8]. All files in FSD
have been uploaded and tagged by many different users. A map-
ping from these tags to AudioSet [9] categories has been manually
designed and all samples have been automatically annotated. After
that, the annotations of some files have been manually verified al-
though there are some cases where the annotators could not agree
on a label.

As a result, the part of the dataset used for training consists of
9473 files belonging to one of 41 categories. The distribution is not

Raw audio data Preprocessing

PLP

MFCC

Mel-
spectrogram

Mel-
spectrogram

CNN

CNN

CNN

CNN

CNN

Fusion
Network

Figure 1: Structure of the audio tagging system

uniform but ranges from 94 to 300 samples per category. In ad-
dition to that, the length of the audio files is between 300 ms and
30 s. Only 3710 samples are manually verified and for each file
it is known if this is the case or not. According to the organizers
of the challenge, at least two thirds of the non-verified samples are
estimated to be labeled correctly for each category. The test set
consists of 1600 manually verified samples and 7800 non-verified
samples referred to as padding files. Furthermore, 301 files have
been used as validation data for the public leaderboard and 1299
files have been used for the final evaluation of the challenge (pri-
vate leaderboard). The padding files have not been used for any
evaluation and were simply kept as test data to prevent participants
from cheating. For a more detailed description of the challenge and
dataset the reader is referred to [10].

This paper is organized as follows. First, the global structure of
the audio tagging system is presented. Then, all five CNNs based
on all features including their hyperparameters as well as the Fusion
Network are described. After that, experimental results are given in
order to compare the performance of the CNNs and to show that
creating an ensemble of them is highly beneficial.

2. STRUCTURE OF THE AUDIO TAGGING SYSTEM

An overview of the audio tagging system’s structure is depicted in
Fig. 1. The system is an ensemble consisting of five different CNNs
trained on PLP features, MFCCs, Mel-spectrograms and the raw
audio data. In the following, we will refer to all of them as features.
First, the audio data has been preprocessed with Librosa [11]. All
files have been downsampled from 44100 Hz to 24000 Hz and were
normalized with respect to the maximum norm. Any part of the files
that is 50 db below peak power is considered as silence and has been
removed. After these steps, all features have been extracted with
Librosa except the PLP features which were computed via Sidekit
[12]. We used a dimension of size 22 for the PLP features, one of
size 64 for the MFCC features and one of size 96 as well as 128 for
the Mel-spectrograms.

Since CNNs need input data of fixed size and the audio files
vary greatly in length, we partitioned the sequence of features into



Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

overlapping windows of length 500 with an overlap of 50 (ordered
with respect to time). To enforce a more different behavior of both
CNNs trained on Mel-spectrograms, a window size of 200 with
overlap 20 has been used for the 128 dimensional features instead.
Much larger windows of length 48000 (i.e. clips of 2 seconds) with
an overlap of 4800 have been used for the raw data. In case that
any of the feature windows was too short, the window has been
repeated until the desired length was reached. Later, the geomet-
ric mean of the scores obtained with all windows belonging to the
same file has been taken as the final score for that file. Note that a
similar windowing approach is also used for the baseline system of
the challenge presented in [10].

The output scores of all CNNs obtained with the validation data
are fused with a neural network. It basically applies Logistic Re-
gression (see [13]) with only a single parameter per model and one
global bias. Thus, the final scores, used for identifying the classes
by returning the argument of the maximum score, are computed as a
weighted linear combination of all models’ scores. This has the ad-
vantage that better performing models have a higher influence than
weaker ones and usually leads to a better performance than taking
the mean (see [14]). A weighted geometric mean of the probabilities
corresponds to a weighted sum (i.e. a standard linear transformation
of a neural network) in log-space. Therefore, we converted all soft-
max probabilities to log-space before applying the neural network
as this improved the overall performance of the system. Addition-
ally, we standardized the scores of each model i.e. we subtracted
the mean and divided by the standard deviation of all scores.

All hyperparameters involved have been tuned using Stratified
5-Fold Cross Validation as implemented in Scikit-learn [15]. After
training all models on the five data splits, also five ensembles were
obtained and each of them has been applied to the test dataset in-
stead of retraining each model on the full training dataset. Hence,
the full ensemble consists of 25 submodels. To have a single fi-
nal output, we simply took the geometric mean of the fused out-
put probabilities obtained by evaluating the five model ensemble
with the test dataset. By doing so, the whole training dataset has
been used while also having the possibility to monitor the sys-
tem’s performance using the validation data. Thus, we could apply
Early Stopping when training each CNN by monitoring the vali-
dation loss. Furthermore, the scores obtained with the validation
data could be used to train the neural networks used for fusing the
scores which would not have been possible otherwise. As a result,
a slightly better performance was reached.

3. NEURAL NETWORK ARCHITECTURES

All CNNs and the Fusion Network have been implemented using
Keras [16] with Tensorflow [17]. Their structures are depicted in
Tab. 1, 2, 3, 4, 5 and 6 which can be found in the appendix. To be
able to compare the complexities of all models, we included their
total number of parameters in Tab. 7.

As stated in [2, 18], data augmentation is of great help in or-
der to have a well performing system. Therefore, Mix-up [19] with
α = 1, Cutout [20], Dropout [21] and vertical shifts up to 60% of
the total width have been applied randomly in each batch. When
using the Mel-spectrogram based CNNs, we also used feature-wise
centering as well as featurewise normalization of the standard de-
viation. All CNNs have been trained for 800 epochs with a batch
size of 64 by minimizing the Categorical Crossentropy. To speed
up the training process, Adam [22] with a learning rate of 0.001
and weight decay of 0.0001 as well as Batch-Normalization [23]

have been used. Due to the non-uniform distribution of training
samples per class, we used balanced class weights during training
to put more emphasis on the classes having fewer samples as imple-
mented in Scikit-learn (which is loosely following [24]).

As noted above, many labels are not guaranteed to be correct
due to the automatic labeling procedure. To compensate for this,
Label Smoothing [25] has been applied. This means that categorical
labels are altered by reducing the single 1 to 1−αnv and replacing
all zeros with αnv

N−1
where αnv ∈ [0, 1] and N ∈ N denotes the

number of classes. According to the organizers of the challenge,
at least two thirds of the non-verified labels are correct. Because
of that, a value of αnv = 0.3 has been used for all non-verified
samples. As the annotators could not agree on a label for some of
the files and thus at least some labels are probably wrong, we used
a value of αv = 0.05 for the manually verified data. In addition
to that, sounds recorded in realistic environments, naturally, contain
more than one class although the organizers of the challenge tried to
prevent this. For example, a barking dog could have been recorded
outside in the streets where buses or other vehicles are also present
or a snare drum, base drum and hi-hat are played together in one
recording of a drummer. Thus, it is not preferable that the system
tries to make a hard prediction per file which is another reason to
include Label Smoothing and Mix-up.

For the Fusion Network slightly different parameters and no
data augmentation techniques have been used. It has been trained
for 1000 epochs with a batch size equal to the size of the full dataset
(i.e. with the exact gradient) using Adam with a learning rate of
0.01. Instead of Label Smoothing and Weight Decay, L2 Regu-
larization with a penalty of 0.0005 has been applied. When using
batch normalization, it was important to disable the additional beta
and gamma parameters in Keras. Otherwise, there is an additional
linear transformation with independent weights for each class and
each model. This gives the Fusion Network too much power and
the generalization to unseen test data is much worse.

4. EXPERIMENTAL RESULTS

The mean Average Precisions with Cutoff 3 (mAP@3s) [8], we ob-
tained in the challenge, can be found in Fig. 2 and have been de-
picted for each model individually. They relate to the dataset used
for the public leaderboard and the private leaderboard, which cor-
respond to the final challenge results, as well as our own five vali-
dation splits of the training dataset. To make it more clear, since all
five validation sets of the splits together result in the whole training
set again, each mAP@3 is based on all 9473 training files. Note
that the data split used for the public leaderboard only consists of
301 files and thus is a less accurate estimate of the true mAP@3.

As expected, the obtained mAP@3s are much higher when only
evaluating with the manually verified data but still using the non-
verified samples for training. Thus, the assumption that the weakly-
labeled files are by far not optimally labeled seems to be true. Since
complete the test set is manually verified, the results of the chal-
lenge are closer to the presented mAP@3s of the manually verified
subset than to the full validation set. It is also clear that the per-
formance obtained with the validation data is a bit too optimistic
because all parameters have been adapted to these data splits. The
CNNs trained on Mel-spectrograms perform better than the ones
trained on PLP and MFCC features which both result in similar
mAP@3s. In addition to that, the CNN trained on the raw data per-
formed worst but still reasonably well. Interestingly, a relatively
small number of model parameters seems to be sufficient since both



Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

PLP
(22, 500)

MFCC
(64, 500)

Mel-spectr.
(96, 500)

Mel-spectr.
(128, 200)

RAW
(48000)

Ensemble
0.8

0.85

0.9

0.95
0
.8

6
2

0
.8

6
5

0
.8

9
3

0
.8

9
5

0
.8

1
2

0
.9

1
5

0
.9

2
1

0
.9

2
2

0
.9

4
8

0
.9

4
8

0
.8

7
6

0
.9

6
7

0
.9

0
5 0
.9

2
2

0
.9

2
8

0
.9

4

0
.8

8
9

0
.9

5
6

0
.8

9
7

0
.9

0
.9

3

0
.9

2
9

0
.8

7

0
.9

4
1

0
.8

9
9

0
.9

0
4

0
.9

2
9

0
.9

3
1

0
.8

7
3

0
.9

4
4

m
A

P@
3

full validation dataset
manually verified files of validation dataset only

test data used for public leaderboard
test data used for private leaderboard (final challenge results)

full test dataset used for private and public leaderboard

Figure 2: Mean Average Precision with Cutoff 3 obtained with the
CNNs and the ensemble.

A
co

us
tic

gu
ita

r
A

pp
la

us
e

B
ar

k
B

as
s

dr
um

B
ur

pi
ng

or
er

uc
ta

tio
n

B
us

C
el

lo
C

hi
m

e
C

la
ri

ne
t

C
om

pu
te

rk
ey

bo
ar

d
C

ou
gh

C
ow

be
ll

D
ou

bl
e

ba
ss

D
ra

w
er

op
en

or
cl

os
e

E
le

ct
ri

c
pi

an
o

Fa
rt

Fi
ng

er
sn

ap
pi

ng
Fi

re
w

or
ks

Fl
ut

e
G

lo
ck

en
sp

ie
l

G
on

g
G

un
sh

ot
or

gu
nfi

re
H

ar
m

on
ic

a
H

i-
ha

t
K

ey
s

ja
ng

lin
g

K
no

ck
L

au
gh

te
r

M
eo

w
M

ic
ro

w
av

e
ov

en
O

bo
e

Sa
xo

ph
on

e
Sc

is
so

rs
Sh

at
te

r
Sn

ar
e

dr
um

Sq
ue

ak
Ta

m
bo

ur
in

e
Te

ar
in

g
Te

le
ph

on
e

Tr
um

pe
t

V
io

lin
or

fid
dl

e
W

ri
tin

g

0

0.2

0.4

0.6

0.8

1 0
.9

3
3

1 0
.9

8
2

1 1

0
.8

9
3

0
.9

7
2

0
.8

4
5

0
.9

9
1

1 1

0
.9

7
6

1

0
.9

0
8

0
.9

7
9

1 1

0
.7

4

0
.9

9
1

0
.8

6
2 0
.9

7
3

0
.9

5
2

0
.9

4
4

0
.9

6
2

0
.9

2
9

0
.9

5
3

0
.9

6
9

0
.9

8
3

0
.9

6
6

1

0
.9

5
2

0
.8

5
3 0
.9

4
3

0
.9

8
5

0
.5

1
1

0
.9

5
8

0
.9

3
8

0
.7

5
7

0
.9

5
9

1

0
.8

8
5

m
A

P@
3

Figure 3: Mean Average Precision with Cutoff 3 per class obtained
with all test files used for the public and private leaderboard.

Mel-spectrogram based CNNs performed equally well although one
has about five times as many parameters as the other (see Tab. 7).
Furthermore, it can be seen that the ensemble of all CNNs has a sig-
nificantly higher mAP@3 than all of its components alone across all
datasets. Hence, each of them has a slightly different view on the
data providing additional information. In conclusion, building an
ensemble of CNNs based on all the features is highly beneficial.
But compared to the baseline system which yields an mAP@3 of
0.6945 on the private leaderboard and of 0.7049 on the public one,
even the individual CNNs perform much better.

Next, the mAP@3s have been evaluated for each class individu-
ally to see which classes are easily identified and which ones are not.
See Fig. 3, for a visualization. The mAP@3s for most classes are
decent and ten classes are even identified without any errors. How-
ever, there are some classes whose mAP@3s are much lower than
those of the other classes. The worst performing class is “Squeak”
which has an mAP@3 of 0.511. A reason may be that squeaks are
diversely sounding depending on the objects causing them. Look-
ing at the confusion matrix (see Fig. 4), it can be seen that squeaks
are fairly often confused with many other classes which supports
this assumption. Additionally, there are also classes which are al-
most exclusively confused with each other as for example “Chime”

Ac
ou

st
ic 

gu
ita

r
Ap

pl
au

se
Ba

rk
Ba

ss
 d

ru
m

Bu
rp

in
g 

or
 e

ru
ct

at
io

n
Bu

s
Ce

llo
Ch

im
e

Cl
ar

in
et

Co
m

pu
te

r k
ey

bo
ar

d
Co

ug
h

Co
wb

el
l

Do
ub

le
 b

as
s

Dr
aw

er
 o

pe
n 

or
 c

lo
se

El
ec

tri
c 

pi
an

o
Fa

rt
Fi

ng
er

 sn
ap

pi
ng

Fi
re

wo
rk

s
Fl

ut
e

Gl
oc

ke
ns

pi
el

Go
ng

Gu
ns

ho
t o

r g
un

fir
e

Ha
rm

on
ica

Hi
-h

at
Ke

ys
 ja

ng
lin

g
Kn

oc
k

La
ug

ht
er

M
eo

w
M

icr
ow

av
e 

ov
en

Ob
oe

Sa
xo

ph
on

e
Sc

iss
or

s
Sh

at
te

r
Sn

ar
e 

dr
um

Sq
ue

ak
Ta

m
bo

ur
in

e
Te

ar
in

g
Te

le
ph

on
e

Tr
um

pe
t

Vi
ol

in
 o

r f
id

dl
e

W
rit

in
g

Acoustic guitar
Applause

Bark
Bass drum

Burping or eructation
Bus

Cello
Chime

Clarinet
Computer keyboard

Cough
Cowbell

Double bass
Drawer open or close

Electric piano
Fart

Finger snapping
Fireworks

Flute
Glockenspiel

Gong
Gunshot or gunfire

Harmonica
Hi-hat

Keys jangling
Knock

Laughter
Meow

Microwave oven
Oboe

Saxophone
Scissors
Shatter

Snare drum
Squeak

Tambourine
Tearing

Telephone
Trumpet

Violin or fiddle
Writing 10−2

10−1

100

Figure 4: Confusion matrix obtained with all test files used for the
public and private leaderboard.

and “Glockenspiel”. Both have a relatively low mAP@3 of approx-
imately 0.85. From a human’s perspective it seems to be reasonable
to confuse them as they are mostly perceived as similarly sounding.

5. CONCLUSIONS AND FUTURE WORK

In this work, an audio tagging system consisting of five CNNs and
a neural network for fusing their scores has been presented and de-
scribed. In the experimental evaluations conducted for Task 2 of
the DCASE Challenge 2018, it has been shown that ensembling all
models significantly improves upon the performances of each indi-
vidual model. Furthermore, we examined the performance per class
and were able to identify classes which are very easy to classify and
some that are difficult to classify leading to more insights about the
dataset used in this challenge.

An improvement of the presented audio tagging system could
be achieved by using additional data augmentation techniques.
Some techniques to be named are Pitch-Shifting, Time-Stretching,
class conditional data augmentation as suggested in [18] or Equal-
ized Mixture Data Augmentation [2] which is an extension of Mix-
up. Another possibility is to make use of Transfer Learning and
replace some models of the ensemble with pretrained deep neural
networks as for example VGG or ResNet (as done in [3]). This
will probably improve the performances of the individual models
and thus also the capabilities of the whole audio tagging system.
Last but not least, another improvement may be accomplished by
designing custom features or classifiers (e.g. other CNNs) for dif-
ferentiating among those classes which are hard to tell apart and add
them to the ensemble.

6. ACKNOWLEDGMENT

The author would like to thank Daisuke Niizumi who also partici-
pated in this challenge and shared his insights publicly in the Kaggle
discussion forum. His comments on data augmentation techniques
such as Mix-up and Cutout have been of great help to improve the
performance of the presented audio tagging system.



Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

7. REFERENCES

[1] O. Gencoglu, T. Virtanen, and H. Huttunen, “Recognition
of acoustic events using deep neural networks,” in Signal
Processing Conference (EUSIPCO), 2014 Proceedings of the
22nd European. IEEE, 2014, pp. 506–510.

[2] N. Takahashi, M. Gygli, B. Pfister, and L. Van Gool, “Deep
convolutional neural networks and data augmentation for
acoustic event detection,” in Interspeech, 2016, pp. 2982–
2986.

[3] S. Hershey, S. Chaudhuri, D. P. Ellis, J. F. Gemmeke,
A. Jansen, R. C. Moore, M. Plakal, D. Platt, R. A. Saurous,
B. Seybold, et al., “Cnn architectures for large-scale audio
classification,” in Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on. IEEE,
2017, pp. 131–135.

[4] A. Mesaros, T. Heittola, A. Eronen, and T. Virtanen, “Acoustic
event detection in real life recordings,” in Signal Processing
Conference (EUSIPCO), 2010 Proceedings of the 18th Euro-
pean. IEEE, 2010, pp. 1267–1271.

[5] S. Davis and P. Mermelstein, “Comparison of parametric rep-
resentations for monosyllabic word recognition in continu-
ously spoken sentences,” IEEE transactions on acoustics,
speech, and signal processing, vol. 28, no. 4, pp. 357–366,
1980.

[6] H. Hermansky, “Perceptual linear prediction (plp) analysis of
speech,” the Journal of the Acoustical Society of America,
vol. 87, no. 4, pp. 1738–1752, 1990.

[7] E. Fonseca, J. Pons, X. Favory, F. Font, D. Bogdanov, A. Fer-
raro, S. Oramas, A. Porter, and X. Serra, “Freesound datasets:
a platform for the creation of open audio datasets,” in Proceed-
ings of the 18th International Society for Music Information
Retrieval Conference (ISMIR 2017), Suzhou, China, 2017, pp.
486–493.

[8] F. Font, G. Roma, and X. Serra, “Freesound technical demo,”
in Proceedings of the 21st ACM international conference on
Multimedia. ACM, 2013, pp. 411–412.

[9] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Audio
set: An ontology and human-labeled dataset for audio events,”
in Acoustics, Speech and Signal Processing (ICASSP), 2017
IEEE International Conference on. IEEE, 2017, pp. 776–
780.

[10] E. Fonseca, M. Plakal, F. Font, D. P. W. Ellis, X. Favory,
J. Pons, and X. Serra, “General-purpose tagging of freesound
audio with audioset labels: Task description, dataset, and
baseline,” Submitted to DCASE2018 Workshop, 2018. URL:
https://arxiv.org/abs/1807.09902.

[11] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar,
E. Battenberg, and O. Nieto, “librosa: Audio and music sig-
nal analysis in python,” in Proceedings of the 14th python in
science conference, 2015, pp. 18–25.

[12] A. Larcher, K. A. Lee, and S. Meignier, “An extensible
speaker identification sidekit in python,” in Acoustics, Speech
and Signal Processing (ICASSP), 2016 IEEE International
Conference on. IEEE, 2016, pp. 5095–5099.

[13] C. M. Bishop, Pattern Recognition and Machine Learning,
1st ed. Springer, 2006.

[14] K. Wilkinghoff, P. M. Baggenstoss, A. Cornaggia-
Urrigshardt, and F. Kurth, “Robust speaker identification
by fusing classification scores with a neural network,”
2018, preprint, to appear in: Proceedings of the 13th ITG
Symposium on Speech Communication.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Re-
search, vol. 12, pp. 2825–2830, 2011.

[16] F. Chollet et al., “Keras,” https://keras.io, 2015.

[17] M. Abadi et al., “Tensorflow: a system for large-scale ma-
chine learning,” OSDI, vol. 16, pp. 265–283, 2016.

[18] J. Salamon and J. P. Bello, “Deep convolutional neural net-
works and data augmentation for environmental sound classi-
fication,” IEEE Signal Processing Letters, vol. 24, no. 3, pp.
279–283, 2017.

[19] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz,
“mixup: Beyond empirical risk minimization,” arXiv preprint
arXiv:1710.09412, 2017.

[20] T. DeVries and G. W. Taylor, “Improved regularization of
convolutional neural networks with cutout,” arXiv preprint
arXiv:1708.04552, 2017.

[21] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” The Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic op-
timization,” arXiv preprint arXiv:1412.6980, 2014.

[23] S. Ioffe and C. Szegedy, “Batch normalization: accelerating
deep network training by reducing internal covariate shift,” in
Proceedings of the 32nd International Conference on Machine
Learning, vol. 37, 2015, pp. 448–456.

[24] G. King and L. Zeng, “Logistic regression in rare events data,”
Political analysis, vol. 9, no. 2, pp. 137–163, 2001.

[25] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 2818–2826.



Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

Table 1: Architecture of the PLP based CNN.
Layer Output Shape #Parameters

Input (22, 500) 0
Convolution (kernel size: 5x5, strides: 2x3, ReLU) (11, 167, 64) 1,664
Max-Pooling (pool size: 2x2, strides: 1x2) (10, 83, 64) 0
Batch Normalization (10, 83, 64) 256
Convolution (kernel size: 5x5, ReLU) (10, 83, 128) 204,928
Max-Pooling (pool size: 2x2, strides: 1x2) (9, 41, 128) 0
Batch Normalization (9, 41, 128) 512
Convolution (kernel size: 3x3, ReLU) (9, 41, 192) 221,376
Batch Normalization (9, 41, 192) 768
Convolution (kernel size: 3x3, ReLU) (9, 41, 256) 442,624
Batch Normalization (9, 41, 256) 1,024
Convolution (kernel size: 3x3, ReLU) (9, 41, 256) 262,400
Max-Pooling (pool size: 2x2, strides: 1x2) (8, 20, 256) 0
Batch Normalization (8, 20, 256) 1,024
Flatten 40,960 0
Dropout (0.5) 40,960 0
Dense (ReLU) 256 10,486,016
Batch Normalization 256 1,024
Dropout (0.5) 256 0
Dense (ReLU) 128 32,896
Batch Normalization 128 512
Dense (Softmax) 41 5,289

Table 2: Architecture of the MFCC based CNN.
Layer Output Shape #Parameters

Input (64, 500) 0
Convolution (kernel size: 5x5, strides: 2x3, ReLU) (32, 167, 64) 1,664
Max-Pooling (pool size: 2x2, strides: 1x2) (31, 83, 64) 0
Batch Normalization (31, 83, 64) 256
Convolution (kernel size: 5x5, ReLU) (31, 83, 128) 204,928
Max-Pooling (pool size: 2x2, strides: 1x2) (30, 41, 128) 0
Batch Normalization (30, 41, 128) 512
Convolution (kernel size: 3x3, ReLU) (30, 41, 192) 221,376
Batch Normalization (30, 41, 192) 768
Convolution (kernel size: 3x3, ReLU) (30, 41, 256) 442,624
Batch Normalization (30, 41, 256) 1,024
Convolution (kernel size: 3x3, ReLU) (30, 41, 256) 262,400
Max-Pooling (pool size: 2x2, strides: 1x2) (29, 20, 256) 0
Batch Normalization (29, 20, 256) 1,024
Flatten 148,480 0
Dropout (0.5) 148,480 0
Dense (ReLU) 256 38,011,136
Batch Normalization 256 1,024
Dropout (0.5) 256 0
Dense (ReLU) 128 32,896
Batch Normalization 128 512
Dense (Softmax) 41 5,289

Table 3: Architecture of the Mel Spectrogram based CNN.
Layer Output Shape #Parameters

Input (96, 500) 0
Convolution (kernel size: 5x5, strides: 2x3, ReLU) (48, 167, 64) 1,664
Max-Pooling (pool size: 3x3, strides: 1x2) (46, 83, 64) 0
Batch Normalization (46, 83, 64) 256
Convolution (kernel size: 5x5, ReLU) (46, 83, 128) 204,928
Max-Pooling (pool size: 3x3, strides: 2x2) (22, 41, 128) 0
Batch Normalization (22, 41, 128) 512
Convolution (kernel size: 3x3, ReLU) (22, 41, 192) 221,376
Batch Normalization (22, 41, 192) 768
Convolution (kernel size: 3x3, ReLU) (22, 41, 256) 442,624
Batch Normalization (22, 41, 256) 1,024
Convolution (kernel size: 2x2, ReLU) (22, 41, 256) 262,400
Max-Pooling (pool size: 2x2) (11, 20, 256) 0
Batch Normalization (11, 20, 256) 1,024
Flatten 56,320 0
Dropout (0.5) 56,320 0
Dense (ReLU) 256 14,418,176
Batch Normalization 256 1,024
Dropout (0.5) 256 0
Dense (ReLU) 128 32,896
Batch Normalization 128 512
Dense (Softmax) 41 5,289

Table 4: Architecture of the Mel Spectrogram based CNN.
Layer Output Shape #Parameters

Input (128, 200) 0
Convolution (kernel size: 5x5, strides: 2x3, ReLU) (64, 67, 64) 1,664
Max-Pooling (pool size: 3x3, strides: 1x2) (62, 33, 64) 0
Batch Normalization (62, 33, 64) 256
Convolution (kernel size: 5x5, ReLU) (62, 33, 128) 204,928
Max-Pooling (pool size: 3x3, strides: 2x2) (30, 16, 128) 0
Batch Normalization (30, 16, 128) 512
Convolution (kernel size: 3x3, ReLU) (30, 16, 192) 221,376
Batch Normalization (30, 16, 192) 768
Convolution (kernel size: 3x3, ReLU) (30, 16, 256) 442,624
Max-Pooling (pool size: 2x2) (15, 8, 256) 0
Batch Normalization (15, 8, 256) 1,024
Convolution (kernel size: 3x3, ReLU) (15, 8, 256) 590,080
Max-Pooling (pool size: 2x2) (7, 4, 256) 0
Batch Normalization (7, 4, 256) 1,024
Convolution (kernel size: 3x3, ReLU) (7, 4, 512) 1,180,160
Batch Normalization (7, 4, 512) 2,048
Global Average Pooling 512 0
Dropout (0.5) 56,320 0
Dense (ReLU) 256 131,328
Batch Normalization 256 1,024
Dropout (0.5) 256 0
Dense (ReLU) 128 32,896
Batch Normalization 128 512
Dense (Softmax) 41 5,289

Table 5: Architecture of the raw data based CNN.
Layer Output Shape #Parameters

Input 48000 0
Convolution (kernel size: 31, strides: 4, ReLU) (12000, 64) 2,048
Batch Normalization (12000, 64) 256
Max-Pooling (pool size: 16) (750, 64) 0
Dropout (0.2) (750, 64) 0
Convolution (kernel size: 15, strides: 2, ReLU) (375, 128) 123,008
Batch Normalization (375, 128) 512
Max-Pooling (pool size: 4) (93, 128) 0
Dropout (0.2) (93, 128) 0
Convolution (kernel size: 8, ReLU) (93, 192) 196,800
Batch Normalization (93, 192) 768
Dropout (0.2) (93, 192) 0
Convolution (kernel size: 4, ReLU) (93, 256) 196,864
Batch Normalization (93, 256) 1,024
Global Average Pooling 256 0
Dropout (0.5) 256 0
Dense (ReLU) 256 65,792
Batch Normalization 256 1,024
Dropout (0.5) 256 0
Dense (ReLU) 128 32,896
Batch Normalization 128 512
Dense (Softmax) 41 5,289

Table 6: Architecture of the Fusion Network.
Layer Output Shape #Parameters

Input 205 0
Batch Normalization 205 410
Fusion Layer (Softmax) 41 6

Table 7: Total number of parameters of each neural network.
Model Input size Total #Parameters

MFCC based CNN (64, 500) 39,184,873
PLP based CNN (22, 500) 11,659,753
Mel-spectrogram based CNN (96, 500) 15,591,913
Mel-spectrogram based CNN (128, 200) 2,817,513
raw data based CNN 48000 624,745
Fusion Network 205 416


